Détail de l'auteur
Documents disponibles écrits par cet auteur (7)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Comparison of atmospheric mass density models using a new data source: COSMIC satellite ephemerides / Yang Yang in IEEE Aerospace and Electronic Systems Magazine, vol 37 n° 2 (February 2022)
[article]
Titre : Comparison of atmospheric mass density models using a new data source: COSMIC satellite ephemerides Type de document : Article/Communication Auteurs : Yang Yang, Auteur ; Ronald Maj, Auteur ; Changyong He , Auteur ; Robert Norman, Auteur ; Emma Kerr, Auteur ; Brett Anthony Carter, Auteur ; Julie Louise Currie, Auteur ; Steve Gower, Auteur Année de publication : 2022 Projets : 2-Pas d'info accessible - article non ouvert / Article en page(s) : pp 6 - 22 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] analyse comparative
[Termes IGN] atmosphère terrestre
[Termes IGN] éphémérides de satellite
[Termes IGN] International Reference Ionosphere
[Termes IGN] masse d'air
[Termes IGN] modèle atmosphérique
[Termes IGN] orbite basse
[Termes IGN] teneur totale en électronsRésumé : (auteur) Atmospheric mass density (AMD) plays a vital role in the drag calculation for space objects in low Earth orbit. Many empirical AMD models have been developed and used for orbit prediction and efforts continue to improve their accuracy in forecasting high-altitude atmospheric conditions. Previous studies have assessed these models at the height of 200 km to 600 km. In this paper, four state-of-the-art AMD models, i.e., MSISE90, MSISE00, JB2008 and DTM2013 are assessed for their orbit prediction (OP) capabilities by using a new data source of COSMIC satellite ephemerides at an orbital height of ~800 km, where the contribution of ions in the total AMD is more significant. A new testing model was developed by accounting for ion contribution based on the International Reference Ionosphere 2016 model, including many more ion species that are not accounted for in other AMD models. In the assessment, two periods of forty days were chosen in 2014-2015 and 2018-2019, representing solar maximum and minimum periods, respectively, to assess four existing AMD models and the proposed model. Thorough analyses were conducted to compare OP results using different AMD models with precise reference ephemerides of COSMIC satellites and based on various space weather indices. It is shown that the proposed model outperforms all other AMD models in terms of OP errors during the solar maximum period. During solar minimum, the drag acceleration is relatively small for COSMIC satellites. Assessment of all AMD models in the orbit prediction process tends to be contaminated by the remaining uncertainty sources, such as solar radiation pressure. Numéro de notice : A2022-070 Affiliation des auteurs : ENSG+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/MAES.2021.3125101 Date de publication en ligne : 20/12/2021 En ligne : https://doi.org/10.1109/MAES.2021.3125101 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99376
in IEEE Aerospace and Electronic Systems Magazine > vol 37 n° 2 (February 2022) . - pp 6 - 22[article]Application of a multi-layer artificial neural network in a 3-D global electron density model using the long-term observations of COSMIC, Fengyun-3C, and Digisonde / Li Wang in Space weather, vol 19 n° 3 (March 2021)
[article]
Titre : Application of a multi-layer artificial neural network in a 3-D global electron density model using the long-term observations of COSMIC, Fengyun-3C, and Digisonde Type de document : Article/Communication Auteurs : Li Wang, Auteur ; Zhao Dongsheng ; Changyong He , Auteur ; et al., Auteur Année de publication : 2021 Projets : 3-projet - voir note / Article en page(s) : n° e2020SW002605 Note générale : bibliographie
The authors greatly appreciate the financial support from the National Natural Science Foundations of China (Grant No. 41730109, 41804013), the Natural Science Foundation of Jiangsu Province (Grant No. BK20200646, BK20200664), the Fundamental Re-search Funds for the Central Universi-ties (Grant No. 2020QN31, 2020QN30), the Project funded by China Postdoc-toral Science Foundation (Grant No. 2020M671645), the Open Fund of Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution (Grant No. KLSPWSEP-A06), A Project Funded by the Priority Academic Pro-gram Development of Jiangsu Higher Education Institutions (Surveying and Mapping).Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] image Formosat/COSMIC
[Termes IGN] modèle ionosphérique
[Termes IGN] Perceptron multicouche
[Termes IGN] réseau neuronal artificiel
[Termes IGN] teneur totale en électrons
[Termes IGN] variation saisonnièreRésumé : (auteur) The ionosphere plays an important role in satellite navigation, radio communication, and space weather prediction. However, it is still a challenging mission to develop a model with high predictability that captures the horizontal-vertical features of ionospheric electrodynamics. In this study, multiple observations during 2005–2019 from space-borne global navigation satellite system (GNSS) radio occultation (RO) systems (COSMIC and FY-3C) and the Digisonde Global Ionosphere Radio Observatory are utilized to develop a completely global ionospheric three-dimensional electron density model based on an artificial neural network, namely ANN-TDD. The correlation coefficients of the predicted profiles all exceed 0.96 for the training, validation and test datasets, and the minimum root-mean-square error of the predicted residuals is 7.8 × 104 el/cm3. Under quiet space weather, the predicted accuracy of the ANN-TDD is 30%–60% higher than the IRI-2016 at the Millstone Hill and Jicamarca incoherent scatter radars. However, the ANN-TDD is less capable of predicting ionospheric dynamic evolution under severe geomagnetic storms compared to the IRI-2016 with the STORM option activated. Additionally, the ANN-TDD successfully reproduces the large-scale horizontal-vertical ionospheric electrodynamic features, including seasonal variation and hemispheric asymmetries. These features agree well with the structure revealed by the RO profiles derived from the FORMOSAT/COSMIC-2 mission. Furthermore, the ANN-TDD successfully captures the prominent regional ionospheric patterns, including the equatorial ionization anomaly, Weddell Sea anomaly and mid-latitude summer nighttime anomaly. The new model is expected to play an important role in the application of GNSS navigation and in the explanation of the physical mechanisms involved. Numéro de notice : A2021-504 Affiliation des auteurs : ENSG+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1029/2020SW002605 Date de publication en ligne : 10/03/2021 En ligne : https://doi.org/10.1029/2020SW002605 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99369
in Space weather > vol 19 n° 3 (March 2021) . - n° e2020SW002605[article]A new method for improving the performance of an ionospheric model developed by multi-instrument measurements based on artificial neural network / Wang Li in Advances in space research, vol 67 n° 1 (January 2021)
[article]
Titre : A new method for improving the performance of an ionospheric model developed by multi-instrument measurements based on artificial neural network Type de document : Article/Communication Auteurs : Wang Li, Auteur ; Changyong He , Auteur ; Andong Hu, Auteur ; Dongsheng Zhao, Auteur ; Yi Shen, Auteur ; Kefei Zhang, Auteur Année de publication : 2021 Article en page(s) : pp 20 - 34 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] correction ionosphérique
[Termes IGN] image Formosat/COSMIC
[Termes IGN] modèle ionosphérique
[Termes IGN] réseau neuronal artificiel
[Termes IGN] teneur totale en électronsRésumé : (auteur) There are remarkable ionospheric discrepancies between space-borne (COSMIC) measurements and ground-based (ionosonde) observations, the discrepancies could decrease the accuracies of the ionospheric model developed by multi-source data seriously. To reduce the discrepancies between two observational systems, the peak frequency (foF2) and peak height (hmF2) derived from the COSMIC and ionosonde data are used to develop the ionospheric models by an artificial neural network (ANN) method, respectively. The averaged root-mean-square errors (RMSEs) of COSPF (COSMIC peak frequency model), COSPH (COSMIC peak height model), IONOPF (Ionosonde peak frequency model) and IONOPH (Ionosonde peak height model) are 0.58 MHz, 19.59 km, 0.92 MHz and 23.40 km, respectively. The results indicate that the discrepancies between these models are dependent on universal time, geographic latitude and seasons. The peak frequencies measured by COSMIC are generally larger than ionosonde’s observations in the nighttime or middle-latitudes with the amplitude of lower than 25%, while the averaged peak height derived from COSMIC is smaller than ionosonde’s data in the polar regions. The differences between ANN-based maps and references show that the discrepancies between two ionospheric detecting techniques are proportional to the intensity of solar radiation. Besides, a new method based on the ANN technique is proposed to reduce the discrepancies for improving ionospheric models developed by multiple measurements, the results indicate that the RMSEs of ANN models optimized by the method are 14–25% lower than the models without the application of the method. Furthermore, the ionospheric model built by the multiple measurements with the application of the method is more powerful in capturing the ionospheric dynamic physics features, such as equatorial ionization, Weddell Sea, mid-latitude summer nighttime and winter anomalies. In conclusion, the new method is significant in improving the accuracy and physical characteristics of an ionospheric model based on multi-source observations. Numéro de notice : A2021-986 Affiliation des auteurs : ENSG+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.asr.2020.07.032 Date de publication en ligne : 16/12/2020 En ligne : https://doi.org/10.1016/j.asr.2020.07.032 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102912
in Advances in space research > vol 67 n° 1 (January 2021) . - pp 20 - 34[article]Sensor tasking for search and catalog maintenance of geosynchronous space objects / Han Cai in Acta Astronautica, vol 175 (October 2020)
[article]
Titre : Sensor tasking for search and catalog maintenance of geosynchronous space objects Type de document : Article/Communication Auteurs : Han Cai, Auteur ; Yang Yang, Auteur ; Steve Gehly, Auteur ; Changyong He , Auteur ; Moriba Jah, Auteur Année de publication : 2020 Projets : 1-Pas de projet / Article en page(s) : pp 234 - 248 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Techniques orbitales
[Termes IGN] catalogue
[Termes IGN] débris spatial
[Termes IGN] méthode des éléments finis
[Termes IGN] optimisation (mathématiques)
[Termes IGN] orbite géostationnaire
[Termes IGN] poursuite de cible
[Termes IGN] théorie de Dempster-ShaferRésumé : (auteur) The space object catalog provides orbital state and characteristic information of space objects for critical applications in space situational awareness. Maintaining accurate states for all objects in the catalog is essential, but it leads to large loads on sensors and limits the time available to search for new objects. This study proposes a novel sensor tasking method for search and catalog maintenance of space objects in Geosynchronous Earth Orbit (GEO). This new framework formulates sensor tasking as a multi-objective optimization problem. It seeks an optimal balance between sensor resources to search for new objects and to maintain precise state estimates for all objects in the catalog. In order to maintain custody of newly detected targets, an evidence-based decision-making method is used to effectively prompt follow-on tracking. The labeled multi-Bernoulli filter is employed to track existing and new space objects and provide refined orbital state estimation. Simulation results are presented, in which 100 cataloged GEO objects and 200 new GEO objects are tracked using a space-based sensor placed on a Sun-synchronous orbit. Numéro de notice : A2020-419 Affiliation des auteurs : ENSG+Ext (2012-2019) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.actaastro.2020.05.063 Date de publication en ligne : 01/06/2020 En ligne : https://doi.org/10.1016/j.actaastro.2020.05.063 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95550
in Acta Astronautica > vol 175 (October 2020) . - pp 234 - 248[article]Advanced machine learning optimized by the genetic algorithm in ionospheric models using long-term multi-instrument observations / Wang Li in Remote sensing, vol 12 n° 5 (March 2020)
[article]
Titre : Advanced machine learning optimized by the genetic algorithm in ionospheric models using long-term multi-instrument observations Type de document : Article/Communication Auteurs : Wang Li, Auteur ; Dongsheng Zhao, Auteur ; Changyong He , Auteur ; Andong Hu, Auteur ; Kefei Zhang, Auteur Année de publication : 2020 Projets : 3-projet - voir note / Article en page(s) : n° 866 Note générale : bibliographie
This research was funded by the National Natural Science Foundations of China, grant number 41730109, the Priority Academic Program Development of Jiangsu Higher Education Institutions (Surveying and Mapping) and the Jiangsu Dual Creative Talents and Jiangsu Dual Creative Teams Programme Projects awarded in 2017.Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] algorithme génétique
[Termes IGN] image Formosat/COSMIC
[Termes IGN] International Reference Ionosphere
[Termes IGN] modèle ionosphérique
[Termes IGN] réseau neuronal artificiel
[Termes IGN] teneur totale en électronsRésumé : (auteur) The ionospheric delay is of paramount importance to radio communication, satellite navigation and positioning. It is necessary to predict high-accuracy ionospheric peak parameters for single frequency receivers. In this study, the state-of-the-art artificial neural network (ANN) technique optimized by the genetic algorithm is used to develop global ionospheric models for predicting foF2 and hmF2. The models are based on long-term multiple measurements including ionospheric peak frequency model (GIPFM) and global ionospheric peak height model (GIPHM). Predictions of the GIPFM and GIPHM are compared with the International Reference Ionosphere (IRI) model in 2009 and 2013 respectively. This comparison shows that the root-mean-square errors (RMSEs) of GIPFM are 0.82 MHz and 0.71 MHz in 2013 and 2009, respectively. This result is about 20%–35% lower than that of IRI. Additionally, the corresponding hmF2 median errors of GIPHM are 20% to 30% smaller than that of IRI. Furthermore, the ANN models present a good capability to capture the global or regional ionospheric spatial-temporal characteristics, e.g., the equatorial ionization anomaly and Weddell Sea anomaly. The study shows that the ANN-based model has a better agreement to reference value than the IRI model, not only along the Greenwich meridian, but also on a global scale. The approach proposed in this study has the potential to be a new three-dimensional electron density model combined with the inclusion of the upcoming Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC-2) data. Numéro de notice : A2020-872 Affiliation des auteurs : ENSG+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs12050866 Date de publication en ligne : 07/03/2020 En ligne : https://doi.org/10.3390/rs12050866 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99659
in Remote sensing > vol 12 n° 5 (March 2020) . - n° 866[article]Comparison of atmospheric mass density models using a new data source: COSMIC satellite ephemerides / Yang Yang (2020)PermalinkImpact of thermospheric mass density on the orbit prediction of LEO satellites / Changyong He in Space weather, vol 18 n° 1 (January 2020)Permalink