Détail de l'auteur
Auteur Xingli Giam |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Combining radar and optical imagery to map oil palm plantations in Sumatra, Indonesia, using the Google Earth Engine / Thuan Sarzynski in Remote sensing, vol 12 n° 7 (April 2020)
[article]
Titre : Combining radar and optical imagery to map oil palm plantations in Sumatra, Indonesia, using the Google Earth Engine Type de document : Article/Communication Auteurs : Thuan Sarzynski, Auteur ; Xingli Giam, Auteur ; Luis Carrasco, Auteur ; et al., Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte de la végétation
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] Elaeis guineensis
[Termes IGN] Google Earth Engine
[Termes IGN] image Landsat
[Termes IGN] image radar moirée
[Termes IGN] occupation du sol
[Termes IGN] Sumatra
[Termes IGN] surveillance agricole
[Termes IGN] utilisation du solRésumé : (auteur) Monitoring the expansion of commodity crops in the tropics is crucial to safeguard forests for biodiversity and ecosystem services. Oil palm (Elaeis guineensis) is one such crop that is a major driver of deforestation in Southeast Asia. We evaluated the use of a semi-automated approach with random forest as a classifier and combined optical and radar datasets to classify oil palm land-cover in 2015 in Sumatra, Indonesia, using Google Earth Engine. We compared our map with two existing remotely-sensed oil palm land-cover products that utilized visual and semi-automated approaches for the same year. We evaluated the accuracy of oil palm land-cover classification from optical (Landsat), radar (synthetic aperture radar (SAR)), and combined optical and radar satellite imagery (Combined). Combining Landsat and SAR data resulted in the highest overall classification accuracy (84%) and highest producer’s and user’s accuracy for oil palm classification (84% and 90%, respectively). The amount of oil palm land-cover in our Combined map was closer to official government statistics than the two existing land-cover products that used visual interpretation techniques. Our analysis of the extents of disagreement in oil palm land-cover indicated that our map had comparable accuracy to one of them and higher accuracy than the other. Our results demonstrate that a combination of optical and radar data outperforms the use of optical-only or radar-only datasets for oil palm classification and that our technique of preprocessing and classifying combined optical and radar data in the Google Earth Engine can be applied to accurately monitor oil-palm land-cover in Southeast Asia. Numéro de notice : A2020-455 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs12071220 Date de publication en ligne : 10/04/2020 En ligne : https://doi.org/10.3390/rs12071220 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95554
in Remote sensing > vol 12 n° 7 (April 2020)[article]