Détail de l'auteur
Auteur Guocheng Wang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A robust total Kalman filter algorithm with numerical evaluation / Sida Li in Survey review, vol 52 n° 373 (July 2020)
[article]
Titre : A robust total Kalman filter algorithm with numerical evaluation Type de document : Article/Communication Auteurs : Sida Li, Auteur ; Lintao Liu, Auteur ; Zhiping Liu, Auteur ; Guocheng Wang, Auteur Année de publication : 2020 Article en page(s) : pp 309 - 316 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] filtre de Kalman
[Termes IGN] matrice
[Termes IGN] méthode des moindres carrés
[Termes IGN] méthode robuste
[Termes IGN] modèle d'erreur
[Termes IGN] précision du positionnement
[Termes IGN] valeur aberranteRésumé : (auteur) In this study, the observation model of Kalman Filter (KF) is extended to an errors-in-variables (EIV) model because the observations may exist in the design matrix of the observation model. Then, a robust total least squares method (RTLS) is introduced into the KF, and a robust total Kalman filter (RTKF) algorithm is derived. The RTKF is a simple, flexible and effective algorithm. It is simple because its computational formulae are similar to the computational formulae of a standard KF; it is flexible because it can be used in a wide range of applications; it is effective because the influence of outliers on estimated results is weakened. Finally, the simulated example of the indoor location and the empirical example of pseudorange differential positioning are used to demonstrate the performance of the RTKF algorithm. The results prove the validity, robustness, and reliability of the RTKF in dealing with the outliers that exist in both observation vector and design matrix of the EIV model. Furthermore, the results of the empirical example show that the RTKF improves the precision of a pseudorange differential positioning compared with KF and robust Kalman filter (RKF) algorithms regardless the observation model has outliers or not in this empirical example. Numéro de notice : A2020-457 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2018.1563392 Date de publication en ligne : 08/01/2019 En ligne : https://doi.org/10.1080/00396265.2018.1563392 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95556
in Survey review > vol 52 n° 373 (July 2020) . - pp 309 - 316[article]