Détail de l'auteur
Auteur Mohammad Shawkat Hossain |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Coral habitat mapping: a comparison between maximum likelihood, Bayesian and Dempster–Shafer classifiers / Mohammad Shawkat Hossain in Geocarto international, vol 36 n° 11 ([15/06/2021])
[article]
Titre : Coral habitat mapping: a comparison between maximum likelihood, Bayesian and Dempster–Shafer classifiers Type de document : Article/Communication Auteurs : Mohammad Shawkat Hossain, Auteur ; Aidy M. Muslim, Auteur ; Muhammad Izuan Nadzri, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1217 - 1235 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte thématique
[Termes IGN] classification bayesienne
[Termes IGN] classification de Dempster-Shafer
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] classification pixellaire
[Termes IGN] fond marin
[Termes IGN] Google Earth
[Termes IGN] habitat d'espèce
[Termes IGN] image Quickbird
[Termes IGN] Malaisie
[Termes IGN] précision infrapixellaire
[Termes IGN] récif corallienRésumé : (auteur) This study deals with the mixed-pixel problem of detecting benthic habitat class membership and evaluates two soft classifiers for coral habitat mapping on Lang Tengah island (Malaysia). A comparison was made between the Bayesian and Dempster–Shafer (D–S) with a traditional maximum likelihood (ML). The heterogeneous pattern of reef environment, established by field observation, four classes of coral habitats containing various combinations of live coral, dead coral with algae, rubble coral and sand. Posterior probability and belief maps, generated by Bayesian and D–S, respectively, were evaluated by visual inspection and final coral habitat distribution maps were validated via accuracy assessment estimates. The accuracy validation tests agreed with the visual inspection of the probability, uncertainty and coral distribution maps. The Bayesian algorithm performed better, with a 34.7–68.5% improvement in accuracy compared to D–S and ML, respectively. Probability maps demonstrate the advantages of the soft classifier over the hard classifier for coral mapping. Numéro de notice : A2021-435 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1637466 Date de publication en ligne : 10/07/2019 En ligne : https://doi.org/10.1080/10106049.2019.1637466 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97803
in Geocarto international > vol 36 n° 11 [15/06/2021] . - pp 1217 - 1235[article]Can ensemble techniques improve coral reef habitat classification accuracy using multispectral data? / Mohammad Shawkat Hossain in Geocarto international, vol 35 n° 11 ([01/08/2020])
[article]
Titre : Can ensemble techniques improve coral reef habitat classification accuracy using multispectral data? Type de document : Article/Communication Auteurs : Mohammad Shawkat Hossain, Auteur ; Aidy M. Muslim, Auteur ; Muhammad Izuan Nadzri, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 214 - 1232 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biodiversité
[Termes IGN] carte bathymétrique
[Termes IGN] Chine, mer de
[Termes IGN] classification barycentrique
[Termes IGN] classification hypercube
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] distribution de Fisher
[Termes IGN] fond marin
[Termes IGN] image multibande
[Termes IGN] Malaisie
[Termes IGN] précision de la classification
[Termes IGN] récif corallien
[Termes IGN] réflectance spectraleRésumé : (auteur) Remote sensing has potential in studies of the benthic habitat and extracting the reflectance from the data of multispectral sensors, but traditional image classification techniques cannot provide coral habitat maps with adequate accuracy. This study tested five traditional and three ensemble classification techniques on QuickBird for mapping the benthic composition of coral reefs on the Lang Tengah Island (Malaysia). The common techniques, minimum distance, maximum likelihood, K-nearest neighbour, Fisher and parallelepiped techniques were compared with ensemble classifiers, such as majority voting (MV), simple averaging, and mode combination. The per-class accuracy of the habitat detection improved in the ensemble classifiers; in particular, the MV classifier achieved 95%, 65%, 75% and 95% accuracies for coral, sparse coral, coral rubble and sand, respectively. Ensembles increased the accuracy of the habitat mapping classification by 28%, relative to conventional techniques. Thus, the ensemble techniques can be preferred over the traditional for benthic habitat mapping. Numéro de notice : A2020-459 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1557263 Date de publication en ligne : 12/02/2019 En ligne : https://doi.org/10.1080/10106049.2018.1557263 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95566
in Geocarto international > vol 35 n° 11 [01/08/2020] . - pp 214 - 1232[article]