Détail de l'auteur
Auteur Deng-Yuan Ou |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Evaluation of crop mapping on fragmented and complex slope farmlands through random forest and object-oriented analysis using unmanned aerial vehicles / Re-Yang Lee in Geocarto international, vol 35 n° 12 ([01/09/2020])
[article]
Titre : Evaluation of crop mapping on fragmented and complex slope farmlands through random forest and object-oriented analysis using unmanned aerial vehicles Type de document : Article/Communication Auteurs : Re-Yang Lee, Auteur ; Kuo-Chen Chang, Auteur ; Deng-Yuan Ou, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1293 - 1310 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse d'image orientée objet
[Termes IGN] carte de la végétation
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] image captée par drone
[Termes IGN] interprétation automatique
[Termes IGN] pente
[Termes IGN] TaïwanRésumé : (auteur) Conducting field research in Taiwan can be challenging because of the abundance of steep slopes. This study aimed to establish an automatic interpretation procedure applicable to exploring images of large-scale slope land taken using UAVs. The proposed method was compared with traditional field surveying and manual image interpretation techniques to determine the advantages and disadvantages of the proposed procedure in terms of efficiency. The object-based image analysis (OBIA) and texture features were first combined and the random forest (RF) classifier was then employed to interpret crop types. This study selected three sites of slope land and plains for experimentation. The obtained results indicated that the overall accuracy of the proposed classification method exceeded 91%, and the Kappa value was approximately 0.9 for all sites. In addition, interpretation of the proposed method was more efficient than that of the two traditional methods. Numéro de notice : A2020-479 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1559886 Date de publication en ligne : 04/06/2019 En ligne : https://doi.org/10.1080/10106049.2018.1559886 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95628
in Geocarto international > vol 35 n° 12 [01/09/2020] . - pp 1293 - 1310[article]