Détail de l'auteur
Auteur Beibei Wang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Mining regional patterns of land use with adaptive adjacent criteria / Xinmeng Tu in Cartography and Geographic Information Science, Vol 47 n° 5 (September 2020)
[article]
Titre : Mining regional patterns of land use with adaptive adjacent criteria Type de document : Article/Communication Auteurs : Xinmeng Tu, Auteur ; Zhenjie Chen, Auteur ; Beibei Wang, Auteur ; changqing Xu, Auteur Année de publication : 2020 Article en page(s) : pp 418 - 431 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] adjacence
[Termes IGN] analyse combinatoire (maths)
[Termes IGN] analyse de groupement
[Termes IGN] analyse spatio-temporelle
[Termes IGN] changement d'utilisation du sol
[Termes IGN] Chine
[Termes IGN] construction
[Termes IGN] extraction de modèle
[Termes IGN] filtrage spatiotemporel
[Termes IGN] occupation du sol
[Termes IGN] polygone
[Termes IGN] région
[Termes IGN] relation spatiale
[Termes IGN] surface cultivée
[Termes IGN] urbanisation
[Termes IGN] utilisation du sol
[Termes IGN] variogrammeRésumé : (auteur) Land use/cover changes (LULC) are complicated and regionally diverse. When mining regional patterns, the use of a spatial relationship that is determined without considering the spatial correlation among geographical objects can lead to problematic results, e.g. mistakenly treating unrelated objects as adjacent. Additionally, traditional prevalence measures are unstable for uneven datasets such as LULC, wherein some land-use change types show small numbers and uneven quantities, and valuable rules for some land-use categories may be ignored. Therefore, we proposed a regional pattern mining method. First, we developed adaptive adjacent criteria, which can be automatically generated for each specific zone to define adjacency for better spatial-temporal mining. Then, a combinational decision model was built to improve the stability of the prevalence measure, which was used to filter out the insignificant spatial-temporal rules. Furthermore, we proposed two levels of land-use pattern mining, i.e. cluster-level mining and polygon-level mining, to first discover hot-spot areas where similar land-use change has occurred frequently and then to determine the location, frequency, and change time of rules related to different land-use activities. The proposed method was used for mining the dependence of land use and regional patterns on land-use changes. Results show that the proposed method can determine the spatial dependence between the land-use categories, as well as regional patterns of land-use changes. According to our research, the study area, Xinbei District, China, is undergoing land-use change involving rapid urbanization, extensive transportation construction, and losses of farmland. Numéro de notice : A2020-487 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2020.1761452 Date de publication en ligne : 18/06/2020 En ligne : https://doi.org/10.1080/15230406.2020.1761452 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95655
in Cartography and Geographic Information Science > Vol 47 n° 5 (September 2020) . - pp 418 - 431[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2020051 RAB Revue Centre de documentation En réserve L003 Disponible