Détail de l'auteur
Auteur David Monkam |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Classification of vegetation classes by using time series of Sentinel-2 images for large scale mapping in Cameroon / Hermann Tagne in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-3-2022 (2022 edition)
[article]
Titre : Classification of vegetation classes by using time series of Sentinel-2 images for large scale mapping in Cameroon Type de document : Article/Communication Auteurs : Hermann Tagne, Auteur ; Arnaud Le Bris , Auteur ; David Monkam, Auteur ; Clément Mallet , Auteur Année de publication : 2022 Projets : TOSCA Parcelle / Le Bris, Arnaud Article en page(s) : pp 673 - 680 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Cameroun
[Termes IGN] carte de la végétation
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] fusion d'images
[Termes IGN] image Sentinel-MSI
[Termes IGN] occupation du sol
[Termes IGN] série temporelleRésumé : (auteur) Sentinel-2 satellites provide dense image time series exhibiting high spectral, spatial and temporal resolutions. These images are in particular of utter interest for Land-Cover (LC) mapping at large scales. LC maps can now be computed on a yearly basis at the scale of a country with efficient supervised classifiers, assuming suitable training data are available. However, the efficient exploitation of large amount of Sentinel-2 imagery still remain challenging on unexplored areas where state-of-the-art classifiers are prone to fail. This paper focuses on Land-Cover mapping over Cameroon for the purpose of updating the Very High Resolution national topographic geodatabase. The ι2 framework is adopted and tested for the specificity of the country. Here, experiments focus on generic vegetation classes (five) which enables providing robust focusing masks for higher resolution classifications. Two strategies are compared: (i) a LC map is calculated out of a year long time series and (ii) monthly LC maps are generated and merged into a single yearly map. Satisfactory accuracy scores are obtained (>94% in Overall Accuracy), allowing to provide a first step towards finer-grained map retrieval. Numéro de notice : A2022-426 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-3-2022-673-2022 Date de publication en ligne : 18/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-3-2022-673-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100731
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-3-2022 (2022 edition) . - pp 673 - 680[article]Classification of time series of Sentinel-2 images for large scale mapping in Cameroon / Hermann Tagne (2020)
Titre : Classification of time series of Sentinel-2 images for large scale mapping in Cameroon Type de document : Article/Communication Auteurs : Hermann Tagne, Auteur ; Arnaud Le Bris , Auteur ; David Monkam, Auteur ; Clément Mallet , Auteur Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2020 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B3 Projets : TOSCA Parcelle / Le Bris, Arnaud Conférence : ISPRS 2020, Commission 3, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Archives Commission 3 Importance : pp 633 - 640 Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Cameroun
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification
[Termes IGN] image optique
[Termes IGN] image Sentinel-MSI
[Termes IGN] mise à jour de base de données
[Termes IGN] série temporelleRésumé : (auteur) Sentinel-2 satellites provide dense image time series exhibiting high spectral, spatial and temporal resolution. These images are in particular of utter interest to map Land-Cover (LC) at large scale. LC maps can now be computed on a yearly basis at the scale of a country with efficient supervised classifiers, assuming suitable training data are available. However, the efficient exploitation of large amount of Sentinel-2 imagery still remain challenging on unexplored areas where state-of-the-art classifiers are prone to fail. This paper focuses on Land-Cover mapping over Cameroon for the purpose of updating the national topographic geodatabase. The ι2 framework is adopted and tested for the specificity of the country. Here, experiments focus on generic classes (five) which enables providing robust focusing masks for higher resolution classifications. Two strategies are compared: (i) a LC map is calculated out of a year long time series and (ii) monthly LC maps are generated and merged into a single yearly map. Satisfactory accuracy scores are obtained, allowing to provide a first step towards finer-grained map retrieval. Numéro de notice : C2020-006 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B3-2020-633-2020 Date de publication en ligne : 21/08/2020 En ligne : https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-633-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95656