Détail de l'auteur
Auteur Zhihui Wu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Network-constrained bivariate clustering method for detecting urban black holes and volcanoes / Qiliang Liu in International journal of geographical information science IJGIS, vol 34 n° 10 (October 2020)
[article]
Titre : Network-constrained bivariate clustering method for detecting urban black holes and volcanoes Type de document : Article/Communication Auteurs : Qiliang Liu, Auteur ; Zhihui Wu, Auteur ; Min Deng, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1903 - 1929 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse bivariée
[Termes IGN] analyse de groupement
[Termes IGN] analyse spatio-temporelle
[Termes IGN] contour
[Termes IGN] détection d'anomalie
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] Pékin (Chine)
[Termes IGN] planification urbaine
[Termes IGN] protection civile
[Termes IGN] réseau de contraintes
[Termes IGN] réseau routier
[Termes IGN] trafic routier
[Termes IGN] trafic urbain
[Termes IGN] trajectoire (véhicule non spatial)
[Termes IGN] voisinage (relation topologique)
[Termes IGN] zone urbaineRésumé : (auteur) Urban black holes and volcanoes are typical traffic anomalies that are useful for optimizing urban planning and maintaining public safety. It is still challenging to detect arbitrarily shaped urban black holes and volcanoes considering the network constraints with less prior knowledge. This study models urban black holes and volcanoes as bivariate spatial clusters and develops a network-constrained bivariate clustering method for detecting statistically significant urban black holes and volcanoes with irregular shapes. First, an edge-expansion strategy is proposed to construct the network-constrained neighborhoods without the time-consuming calculation of the network distance between each pair of objects. Then, a network-constrained spatial scan statistic is constructed to detect urban black holes and volcanoes, and a multidirectional optimization method is developed to identify arbitrarily shaped urban black holes and volcanoes. Finally, the statistical significance of multiscale urban black holes and volcanoes is evaluated using Monte Carlo simulation. The proposed method is compared with three state-of-the-art methods using both simulated data and Beijing taxicab spatial trajectory data. The comparison shows that the proposed method can detect urban black holes and volcanoes more accurately and completely and is useful for detecting spatiotemporal variations of traffic anomalies. Numéro de notice : A2020-511 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1720027 Date de publication en ligne : 27/02/2020 En ligne : https://doi.org/10.1080/13658816.2020.1720027 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95665
in International journal of geographical information science IJGIS > vol 34 n° 10 (October 2020) . - pp 1903 - 1929[article]