Détail de l'auteur
Auteur Elham Naghizade |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
From small sets of GPS trajectories to detailed movement profiles: quantifying personalized trip-dependent movement diversity / Elham Naghizade in International journal of geographical information science IJGIS, vol 34 n° 10 (October 2020)
[article]
Titre : From small sets of GPS trajectories to detailed movement profiles: quantifying personalized trip-dependent movement diversity Type de document : Article/Communication Auteurs : Elham Naghizade, Auteur ; jeffrey Chan, Auteur ; Martin Tomko, Auteur Année de publication : 2020 Article en page(s) : pp 2004 - 2029 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] comportement
[Termes IGN] données GPS
[Termes IGN] données spatiotemporelles
[Termes IGN] échantillonnage
[Termes IGN] gestion de trafic
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] origine - destination
[Termes IGN] trajet (mobilité)Résumé : (auteur) The ubiquity of personal sensing devices has enabled the collection of large, diverse, and fine-grained spatio-temporal datasets. These datasets facilitate numerous applications from traffic monitoring and management to location-based services. Recently, there has been an increasing interest in profiling individuals' movements for personalized services based on fine-grained trajectory data. Most approaches identify the most representative paths of a user by analyzing coarse location information, e.g., frequently visited places. However, even for trips that share the same origin and destination, individuals exhibit a variety of behaviors (e.g., a school drop detour, a brief stop at a supermarket). The ability to characterize and compare the variability of individuals' fine-grained movement behavior can greatly support location-based services and smart spatial sampling strategies. We propose a TRip DIversity Measure --TRIM – that quantifies the regularity of users' path choice between an origin and destination. TRIM effectively captures the extent of the diversity of the paths that are taken between a given origin and destination pair, and identifies users with distinct movement patterns, while facilitating the comparison of the movement behavior variations between users. Our experiments using synthetic and real datasets and across geographies show the effectiveness of our method. Numéro de notice : A2020-512 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1730849 Date de publication en ligne : 09/03/2020 En ligne : https://doi.org/10.1080/13658816.2020.1730849 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95666
in International journal of geographical information science IJGIS > vol 34 n° 10 (October 2020) . - pp 2004 - 2029[article]