Détail de l'auteur
Auteur Amine Medad |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Comparing supervised learning algorithms for Spatial Nominal Entity recognition / Amine Medad (2020)
Titre : Comparing supervised learning algorithms for Spatial Nominal Entity recognition Type de document : Article/Communication Auteurs : Amine Medad, Auteur ; Mauro Gaio, Auteur ; Ludovic Moncla , Auteur ; Sébastien Mustière , Auteur ; Yannick Le Nir, Auteur Editeur : Göttingen : Copernicus publications Année de publication : 2020 Collection : AGILE GIScience Series num. vol 1 Projets : 1-Pas de projet / Conférence : AGILE 2020, 23rd AGILE Conference on Geographic Information Science 16/06/2020 19/06/2020 Chania - Crète Grèce OA Proceedings Importance : 18 p. Format : 21 x 30 cm Note générale : biblographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] algorithme d'apprentissage
[Termes IGN] analyse comparative
[Termes IGN] entité géographique
[Termes IGN] recherche d'information géographique
[Termes IGN] reconnaissance de noms
[Termes IGN] traitement du langage naturelRésumé : (auteur) Discourse may contain both named and nominal entities. Most common nouns or nominal mentions in natural language do not have a single, simple meaning but rather a number of related meanings. This form of ambiguity led to the development of a task in natural language processing known as Word Sense Disambiguation. Recognition and categorisation of named and nominal entities is an essential step for Word Sense Disambiguation methods. Up to now, named entity recognition and categorisation systems mainly focused on the annotation, categorisation and identification of named entities. This paper focuses on the annotation and the identification of spatial nominal entities. We explore the combination of Transfer Learning principle and supervised learning algorithms, in order to build a system to detect spatial nominal entities. For this purpose, different supervised learning algorithms are evaluated with three different context sizes on two manually annotated datasets built from Wikipedia articles and hiking description texts. The studied algorithms have been selected for one or more of their specific properties potentially useful in solving our problem. The results of the first phase of experiments reveal that the selected algorithms have similar performances in terms of ability to detect spatial nominal entities. The study also confirms the importance of the size of the window to describe the context, when word-embedding principle is used to represent the semantics of each word. Numéro de notice : C2020-013 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/agile-giss-1-15-2020 Date de publication en ligne : 15/07/2020 En ligne : https://doi.org/10.5194/agile-giss-1-15-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95688 Appariement automatique de données hétérogènes: textes, traces GPS et ressources géographiques / Amine Medad (2018)
contenu dans Actes de Conférence SAGEO 2018 - Spatial Analysis and GEOmatics, 6 au 9 novembre 2018 Montpellier, France / Maguelonne Teisseire (2018)
Titre : Appariement automatique de données hétérogènes: textes, traces GPS et ressources géographiques Type de document : Article/Communication Auteurs : Amine Medad, Auteur ; Mauro Gaio, Auteur ; Sébastien Mustière , Auteur Editeur : Montpellier : Centre de Coopération Internationale en recherche agronomique pour le Développement CIRAD Année de publication : 2018 Projets : CHOUCAS / Olteanu-Raimond, Ana-Maria Conférence : SAGEO 2018, Spatial Analysis and GEOmatics 06/11/2018 09/11/2018 Montpellier France Open Access Proceedings Importance : pp 41 - 48 Note générale : bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] appariement automatique
[Termes IGN] données hétérogènes
[Termes IGN] entité géographique
[Termes IGN] randonnée
[Termes IGN] recherche d'information
[Termes IGN] reconstruction d'itinéraire ou de trajectoire
[Termes IGN] toponyme
[Termes IGN] trace GPS
[Termes IGN] traitement du langage naturelRésumé : (auteur) Les travaux que nous présentons dans cet article sont réalisés dans le cadre du projet ANR Choucas. Nous proposons une approche pour l’appariement automatique de traces, de textes de description de randonnées et de ressources géographiques(gazetiers et bases de données géographiques). L’objectif de cet article est d’exposer les premiers éléments d’une méthodologie d’appariement automatique dont les trois étapes sont : l’annotation des traces GPS, l’identification des entités nommées spatiales dans des textes décrivant des itinéraires de randonnées, et la mise en correspondance des toponymes. Numéro de notice : C2018-102 Affiliation des auteurs : LASTIG COGIT+Ext (2012-2019) Thématique : GEOMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésNat DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97348 Documents numériques
en open access
Appariement automatique de donnees heterogenes ... - pdf éditeurAdobe Acrobat PDF