Détail de l'auteur
Auteur Lei Tao |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Multiscale supervised kernel dictionary learning for SAR target recognition / Lei Tao in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
[article]
Titre : Multiscale supervised kernel dictionary learning for SAR target recognition Type de document : Article/Communication Auteurs : Lei Tao, Auteur ; Xue Jiang, Auteur ; Xingzhao Liu, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 6281 - 6297 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] analyse en composantes principales
[Termes IGN] apprentissage automatique
[Termes IGN] classification dirigée
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection automatique
[Termes IGN] détection de cible
[Termes IGN] erreur de classification
[Termes IGN] image radar moirée
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] reconstruction d'imageRésumé : (auteur) In this article, a supervised nonlinear dictionary learning (DL) method, called multiscale supervised kernel DL (MSK-DL), is proposed for target recognition in synthetic aperture radar (SAR) images. We use Frost filters with different parameters to extract an SAR image’s multiscale features for data augmentation and noise suppression. In order to reduce the computation cost, the dimension of each scale feature is reduced by principal component analysis (PCA). Instead of the widely used linear DL, we learn multiple nonlinear dictionaries to capture the nonlinear structure of data by introducing the dimension-reduced features into the nonlinear reconstruction error terms. A classification model, which is defined as a discriminative classification error term, is learned simultaneously. Hence, the objective function contains the nonlinear reconstruction error terms and a classification error term. Two optimization algorithms, called multiscale supervised kernel K-singular value decomposition (MSK-KSVD) and multiscale supervised incremental kernel DL (MSIK-DL), are proposed to compute the multidictionary and the classifier. Experiments on the moving and stationary target automatic recognition (MSTAR) data set are performed to evaluate the effectiveness of the two proposed algorithms. And the experimental results demonstrate that the proposed scheme outperforms some representative common machine learning strategies, state-of-the-art convolutional neural network (CNN) models and some representative DL methods, especially in terms of its robustness against training set size and noise. Numéro de notice : A2020-529 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2976203 Date de publication en ligne : 03/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2976203 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95709
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 9 (September 2020) . - pp 6281 - 6297[article]