Détail de l'auteur
Auteur Xueqian Wang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Ship detection in SAR images via local contrast of Fisher vectors / Xueqian Wang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
[article]
Titre : Ship detection in SAR images via local contrast of Fisher vectors Type de document : Article/Communication Auteurs : Xueqian Wang, Auteur ; Gang Li, Auteur ; Xiao-Ping Zhang, Auteur ; You He, Auteur Année de publication : 2020 Article en page(s) : pp 6467 - 6479 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] contraste local
[Termes IGN] détection d'objet
[Termes IGN] détection de cible
[Termes IGN] distribution de Fisher
[Termes IGN] fouillis d'échos
[Termes IGN] image radar moirée
[Termes IGN] navire
[Termes IGN] processus gaussien
[Termes IGN] rapport signal sur bruit
[Termes IGN] superpixelRésumé : (auteur) Existing superpixel-based detection algorithms for ship targets in synthetic aperture radar (SAR) images are often derived from the local contrast of intensities (i.e., the local contrast of the first-order information of superpixels) leading to deteriorating performance in low signal-to-clutter ratio (SCR) cases due to the low contrast between the intensities of targets and the clutter. In this article, we propose a new superpixel-based detector to improve the performance of ship target detection in SAR images via the local contrast of fisher vectors (LCFVs). The new LCFV-based detector exploits multiorder features of the superpixels based on the Gaussian mixture model (GMM) and accordingly improves the discrimination capability between the ship targets and the sea clutter, especially in low SCR cases. Experimental results demonstrate that the proposed LCFV-based detection algorithm provides better detection performance than the commonly used detection algorithms. Numéro de notice : A2020-530 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2976880 Date de publication en ligne : 18/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2976880 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95713
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 9 (September 2020) . - pp 6467 - 6479[article]