Détail de l'auteur
Auteur Zeyang Dou |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Hyperspectral unmixing using orthogonal sparse prior-based autoencoder with hyper-laplacian loss and data-driven outlier detection / Zeyang Dou in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
[article]
Titre : Hyperspectral unmixing using orthogonal sparse prior-based autoencoder with hyper-laplacian loss and data-driven outlier detection Type de document : Article/Communication Auteurs : Zeyang Dou, Auteur ; Kun Gao, Auteur ; Xiaodian Zhang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 6550 - 6564 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] distribution de Gauss
[Termes IGN] erreur
[Termes IGN] image hyperspectrale
[Termes IGN] reconstruction d'image
[Termes IGN] valeur aberranteRésumé : (auteur) Hyperspectral unmixing, which estimates end-members and their corresponding abundance fractions simultaneously, is an important task for hyperspectral applications. In this article, we propose a new autoencoder-based hyperspectral unmixing model with three novel components. First, we propose a new sparse prior to abundance maps. The proposed prior, called orthogonal sparse prior (OSP), is based on the observations that different abundance maps are close to orthogonal because, generally, no more than two end-members are mixed within one pixel. As opposed to the conventional norm-based sparse prior that assumes the abundance maps are independent, the proposed OSP explores the orthogonality between the abundance maps. Second, we propose the hyper-Laplacian loss to model the reconstruction error. The key observation is that the reconstruction error distribution usually has a heavy-tailed shape, which is better modeled by the hyper-Laplacian distribution rather than the commonly used Gaussian distribution. Third, to ease the side effect of outliers for end-member initializations, we develop a data-driven approach to detect outliers from the raw hyperspectral images. Extensive experiments on both synthetic and real-world data sets show that the proposed method significantly and consistently outperforms the compared state-of-the-art methods, with up to more than 50% improvements. Numéro de notice : A2020-532 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2977819 Date de publication en ligne : 16/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2977819 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95715
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 9 (September 2020) . - pp 6550 - 6564[article]