Détail de l'auteur
Auteur Zhouxin Xi |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
See the forest and the trees: Effective machine and deep learning algorithms for wood filtering and tree species classification from terrestrial laser scanning / Zhouxin Xi in ISPRS Journal of photogrammetry and remote sensing, vol 168 (October 2020)
[article]
Titre : See the forest and the trees: Effective machine and deep learning algorithms for wood filtering and tree species classification from terrestrial laser scanning Type de document : Article/Communication Auteurs : Zhouxin Xi, Auteur ; Christopher Hopkinson, Auteur ; Stewart B. Rood, Auteur ; Derek R. Peddle, Auteur Année de publication : 2020 Article en page(s) : pp 1 - 16 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse comparative
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage profond
[Termes IGN] classification
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] espèce végétale
[Termes IGN] gestion forestière
[Termes IGN] semis de points
[Termes IGN] variation saisonnièreRésumé : (auteur) Determining tree species composition in natural forests is essential for effective forest management. Species classification at the individual tree level requires fine-scale traits which can be derived through terrestrial laser scanning (TLS) point clouds. A generalizable species classification framework also needs to decouple seasonal foliage variation from deciduous species, for which wood filtering is applicable. Different machine learning and deep learning models are feasible for wood filtering and species classification. We investigated 13 machine learning and deep learning classifiers for 9 species, and 15 classifiers for filtering wood points from TLS plot scans. Each classifier was evaluated using the criteria of mean Intersection over Union accuracy (mIoU), training stability and time cost. On average, deep learning classifiers outperformed machine learning classifiers by 10% and 5% in terms of wood and species classification mIoU, respectively. PointNet++ provided the best species classifier, with the highest mIoU (0.906), stability, and moderate time cost. Among wood classifiers, UNet achieved the top mIoU (0.839) while ResNet-50 was recommended for rapid trial and error testing. Across the classifications, the factors of input resolution, attributes and features were also analyzed. Hot zones of species classification with PointNet++ were visualized to indicate how AI interpret species traits. Numéro de notice : A2020-533 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.08.001 Date de publication en ligne : 10/08/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.08.001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95718
in ISPRS Journal of photogrammetry and remote sensing > vol 168 (October 2020) . - pp 1 - 16[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020101 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020103 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020102 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt