Détail de l'auteur
Auteur Meifang Li |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Integration of spatialization and individualization: the future of epidemic modelling for communicable diseases / Meifang Li in Annals of GIS, vol 26 n° 3 (July 2020)
[article]
Titre : Integration of spatialization and individualization: the future of epidemic modelling for communicable diseases Type de document : Article/Communication Auteurs : Meifang Li, Auteur ; Xun Shi, Auteur ; Xia Li, Auteur Année de publication : 2020 Article en page(s) : pp 219 - 226 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse spatio-temporelle
[Termes IGN] épidémie
[Termes IGN] historique des données
[Termes IGN] modèle orienté objet
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] risque sanitaire
[Termes IGN] système d'information géographique
[Termes IGN] transmissibilitéRésumé : (auteur) In the past several decades, epidemic modelling for communicable diseases has experienced transitions from treating the entire study area as a whole to addressing spatial variation within the area, and from targeting the entire population to incorporating characteristics of categorized subpopulations and finally going down to the individual level. These transitions have been first driven by the recognition that generalizations of space and population in conventional epidemic modelling may have hampered the effectiveness of the modelling; they then have been supported by increasingly available data that allow depiction of detailed spatiotemporal characteristics of an epidemic, as well as those characteristics of the environment in both human and natural aspects; and finally they have been facilitated by developments in geographic information science, data science, computer science, and computing technologies. Based on a review of a variety of recently developed communicable disease models, we explicitly put forward the notions of spatialization and individualization in this area, and point out that the integration of the two is the future of communicable disease modelling. We also point out that in this area models based on the object conceptualization are good at modelling spatiotemporal process, whereas models based on the field conceptualization are good at representing spatialized information. We propose a procedural framework of epidemic modelling that implements the integration of individualization and spatialization, integration of object-based process and field-based representation, and integration of modelling that retrospectively traces infection relationships based on historical patient data and modelling that prospectively predicts such relationships of future epidemics. Numéro de notice : A2020-581 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/19475683.2020.1768438 Date de publication en ligne : 25/05/2020 En ligne : https://doi.org/10.1080/19475683.2020.1768438 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95903
in Annals of GIS > vol 26 n° 3 (July 2020) . - pp 219 - 226[article]