Détail de l'auteur
Auteur Yu Lan |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Geovisualization of COVID-19: State of the art and opportunities / Yu Lan in Cartographica, vol 56 n° 1 (Spring 2021)
[article]
Titre : Geovisualization of COVID-19: State of the art and opportunities Type de document : Article/Communication Auteurs : Yu Lan, Auteur ; Michael R. Desjardins, Auteur ; Alexander Hohl, Auteur ; Eric Delmelle, Auteur Année de publication : 2021 Article en page(s) : pp 2 - 13 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse de groupement
[Termes IGN] carte interactive
[Termes IGN] carte thématique
[Termes IGN] cube espace-temps
[Termes IGN] données spatiotemporelles
[Termes IGN] Etats-Unis
[Termes IGN] maladie virale
[Termes IGN] modèle dynamique
[Termes IGN] variation saisonnière
[Termes IGN] WebSIG
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) Mapping the prevalence and spread of infectious diseases has never been more critical than during the COVID-19 pandemic. A plethora of Web-based GIS dashboards have been created that incorporate basic GIS functionality; these dashboards have served as platforms for rapid data sharing and real-time information, ultimately facilitating decision making. However, many of them have merely focused on presenting and monitoring cumulative or daily incidence of COVID-19 data, disregarding the temporal dimension. In this paper, we review the usefulness of GIS-based dashboards for mapping the prevalence of COVID-19, but also missed opportunities to emphasize the temporal component of the disease (cyclicity, seasonality). We suggest that advanced geovisualization techniques can be used to integrate the temporal component in interactive animated maps illustrating (a) the daily relative risk and the number of days a geographic region has been in a disease cluster, (b) the ratio between the observed and expected number of cases over time, and (c) mortality count dynamics in a space–time cube. We illustrate these approaches by using COVID-19 cases and death counts across the U.S. at the county level from 25 January 2020 to 1 October 2020. We discuss how each of these visualization approaches can promote the understanding of important public health concepts applied to the pandemic such as risk, spread, and mortality. Finally, we suggest future avenues to promote research at the intersection of space–time visualization and infectious diseases. Numéro de notice : A2021-409 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3138/cart-2020-0027 Date de publication en ligne : 15/03/2021 En ligne : https://doi.org/10.3138/cart-2020-0027 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97730
in Cartographica > vol 56 n° 1 (Spring 2021) . - pp 2 - 13[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 031-2021011 SL Revue Centre de documentation Revues en salle Disponible A web-based spatial decision support system for monitoring the risk of water contamination in private wells / Yu Lan in Annals of GIS, vol 26 n° 3 (July 2020)
[article]
Titre : A web-based spatial decision support system for monitoring the risk of water contamination in private wells Type de document : Article/Communication Auteurs : Yu Lan, Auteur ; Wenwu Tang, Auteur ; Samantha Dye, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 293 - 309 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] arsenic
[Termes IGN] base de données localisées
[Termes IGN] Caroline du Nord (Etats-Unis)
[Termes IGN] contamination
[Termes IGN] eau souterraine
[Termes IGN] interpolation spatiale
[Termes IGN] krigeage
[Termes IGN] pollution des eaux
[Termes IGN] prévention des risques
[Termes IGN] puits
[Termes IGN] santé
[Termes IGN] surveillance sanitaire
[Termes IGN] système d'aide à la décision
[Termes IGN] système d'information géographique
[Termes IGN] WebSIGRésumé : (auteur) Long-term exposure to contaminated water can cause health effects, such as cancer. Accurate spatial prediction of inorganic compounds (e.g. arsenic) and pathogens in groundwater is critical for water supply management. Ideally, environmental health agencies would have access to an early warning system to alert well owners of risks of such contamination. The estimation and dissemination of these risks can be facilitated by the combination of Geographic Information Systems and spatial analysis capabilities – i.e., spatial decision support system (SDSS). However, the use of SDSS, especially web-based SDSS, is rare for spatially explicit studies of drinking water quality of private wells. In this study, we introduce the interactive Well Water Risk Estimation(iWWRE), a web-based SDSS to facilitate the monitoring of water contamination in private wells across Gaston County, North Carolina (US). Our system implements geoprocessing web services and generates dynamic spatial analysis results based on a database of private wells. Environmental health scientists using our system can conduct fine-grained spatial interpolation on 1) a particular type of contaminant such as arsenic, 2) on various subsets through a temporal query. Visuals consist of an estimation map, cross validation information, Kriging variance and contour lines that delineate areas with maximum contaminant levels (MCL), as set by the US Environmental Protection Agency (EPA). Our web-based SDSS was developed jointly with environmental health specialists who found it particularly critical for the monitoring of local contamination trends, and a useful tool to reach out to private well users in highly elevated contaminated areas. Numéro de notice : A2020-583 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/19475683.2020.1798508 Date de publication en ligne : 30/07/2020 En ligne : https://doi.org/10.1080/19475683.2020.1798508 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95905
in Annals of GIS > vol 26 n° 3 (July 2020) . - pp 293 - 309[article]