Détail de l'auteur
Auteur Xuelu Li |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Multiview automatic target recognition for infrared imagery using collaborative sparse priors / Xuelu Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)
[article]
Titre : Multiview automatic target recognition for infrared imagery using collaborative sparse priors Type de document : Article/Communication Auteurs : Xuelu Li, Auteur ; Vishal Monga, Auteur ; Abhijit Mahalanobis, Auteur Année de publication : 2020 Article en page(s) : pp 6776 - 6790 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] ajustement de paramètres
[Termes IGN] apprentissage profond
[Termes IGN] détection de cible
[Termes IGN] données clairsemées
[Termes IGN] estimation bayesienne
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à basse résolution
[Termes IGN] image infrarouge
[Termes IGN] reconnaissance automatiqueRésumé : (auteur) The low resolution of infrared (IR) images makes feature extraction for classification of a challenging work. Learning-based methods, therefore, are preferred to be used on such raw imagery. In this article, in order to avoid difficulties in feature extraction, a novel multitask extension of the widely used sparse-representation-classification (SRC) method is proposed in both single and multiview set-ups. That is, the test sample could be a single IR image or images from different views. In both single-view and multiview scenarios, we try to employ collaborative spike and slab priors. This is because the traditional sparsity-inducing measures such as the l0 -row pseudonorm makes it hard to capture the sparse structure of the coefficient matrix when expanded in terms of a training dictionary, and the priors are proved to be able to capture fairly general sparse structures. Furthermore, a joint prior and sparse coefficient estimation method (JPCEM) is proposed for the first time in this article in order to alleviate the need to handpick prior parameters required before classification. Multiple experiments are conducted on a synthetic Comanche Forward Looking IR (FLIR) Automatic Target Recognition (ATR) database collected by Army Research Lab and a challenging mid-wave IR (MWIR) image ATR database made available by the U.S. Army Night Vision and Electronic Sensors Directorate. The final results substantiate the merits of the proposed JPCEM through comparisons with other state-of-the-art methods, including both the ones based on SRC and the ones constructed using deep learning frameworks. Numéro de notice : A2020-584 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2973969 Date de publication en ligne : 26/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2973969 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95908
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 10 (October 2020) . - pp 6776 - 6790[article]