Détail de l'auteur
Auteur Iordanis Evangelou |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Rasterisation-based progressive photon mapping / Iordanis Evangelou in The Visual Computer, vol 36 n° 10 - 12 (October 2020)
[article]
Titre : Rasterisation-based progressive photon mapping Type de document : Article/Communication Auteurs : Iordanis Evangelou, Auteur ; Georgios Papaioannou, Auteur ; Konstantinos Vardis, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1993 - 2004 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] architecture pipeline (processeur)
[Termes IGN] cartographie
[Termes IGN] implémentation (informatique)
[Termes IGN] lancer de rayons
[Termes IGN] photon
[Termes IGN] processeur graphique
[Termes IGN] rastérisationRésumé : (auteur) Ray tracing on the GPU has been synergistically operating alongside rasterisation in interactive rendering engines for some time now, in order to accurately capture certain illumination effects. In the same spirit, in this paper, we propose an implementation of progressive photon mapping entirely on the rasterisation pipeline, which is agnostic to the specific GPU architecture, in order to synthesise images at interactive rates. While any GPU ray tracing architecture can be used for photon mapping, performing ray traversal in image space minimises acceleration data structure construction time and supports arbitrarily complex and fully dynamic geometry. Furthermore, this strategy maximises data structure reuse by encompassing rasterisation, ray tracing and photon gathering tasks in a single data structure. Both eye and light paths of arbitrary depth are traced on multi-view deep G-buffers, and photon flux is gathered by a properly adapted multi-view photon splatting. In contrast to previous methods exploiting rasterisation to some extent, due to our novel indirect photon splatting approach, any event combination present in photon mapping is captured. We evaluate our method using typical test scenes and scenarios for photon mapping methods and show how our approach outperforms typical GPU-based progressive photon mapping. Numéro de notice : A2020-412 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s00371-020-01897-3 Date de publication en ligne : 14/07/2020 En ligne : https://doi.org/10.1007/s00371-020-01897-3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95935
in The Visual Computer > vol 36 n° 10 - 12 (October 2020) . - pp 1993 - 2004[article]