Détail de l'auteur
Auteur Hao Peng |
Documents disponibles écrits par cet auteur (5)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Extraction from high-resolution remote sensing images based on multi-scale segmentation and case-based reasoning / Jun Xu in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 3 (March 2022)
[article]
Titre : Extraction from high-resolution remote sensing images based on multi-scale segmentation and case-based reasoning Type de document : Article/Communication Auteurs : Jun Xu, Auteur ; Jiasong Li, Auteur ; Hao Peng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 199 - 205 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] analyse d'image orientée objet
[Termes IGN] classification barycentrique
[Termes IGN] distance de Kullback-Leibler
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à haute résolution
[Termes IGN] image Worldview
[Termes IGN] masque
[Termes IGN] occupation du sol
[Termes IGN] segmentation d'image
[Termes IGN] segmentation multi-échelle
[Termes IGN] séparateur à vaste margeRésumé : (auteur) In object-oriented information extraction from high-resolution remote sensing images, the segmentation and classification of images involves considerable manual participation, which limits the development of automation and intelligence for these purposes. Based on the multi-scale segmentation strategy and case-based reasoning, a new method for extracting high-resolution remote sensing image information by fully using the image and nonimage features of the case object is proposed. Feature selection and weight learning are used to construct a multi-level and multi-layer case library model of surface cover classification reasoning. Combined with image mask technology, this method is applied to extract surface cover classification information from remote sensing images using different sensors, time, and regions. Finally, through evaluation of the extraction and recognition rates, the accuracy and effectiveness of this method was verified. Numéro de notice : A2022-202 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.20-00104R3 Date de publication en ligne : 01/03/2022 En ligne : https://doi.org/10.14358/PERS.20-00104R3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100006
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 3 (March 2022) . - pp 199 - 205[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022031 SL Revue Centre de documentation Revues en salle Disponible Review of spectral indices for urban remote sensing / Akib Javed in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 7 (July 2021)
[article]
Titre : Review of spectral indices for urban remote sensing Type de document : Article/Communication Auteurs : Akib Javed, Auteur ; Qimin Cheng, Auteur ; Hao Peng, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 513 - 524 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] bande spectrale
[Termes IGN] classification non dirigée
[Termes IGN] détection du bâti
[Termes IGN] indice de détection
[Termes IGN] milieu urbain
[Termes IGN] occupation du sol
[Termes IGN] surface imperméableRésumé : (Auteur) Urban spectral indices have made promising improvements in the last two decades in urban land use land cover studies through mapping, estimation, change detection, time-series analyzing, urban dynamics, monitoring, modeling, and so on. Remote sensing spectral indices are unsupervised, unbiased, rapid, scalable, and quantitative in information extraction. Hence, we aimed to summarize the most relevant urban spectral indices by focusing on multispectral, thermal, and nighttime lights indices. We use the search terms "urban index", "built-up index", "normalized difference built-up area (NDBI )", "impervious surface index", and "spectral urban index" to collect relevant literature from the "Web of Science Core Collection" database. We found that all urban spectral indices developed since 2003, except NDBI. This review will help understand the applications of urban spectral indices, the selection of indices based on available spectral bands, and their merits and demerits. Numéro de notice : A2021-572 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.7.513 Date de publication en ligne : 01/07/2021 En ligne : https://doi.org/10.14358/PERS.87.7.513 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98167
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 7 (July 2021) . - pp 513 - 524[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021071 SL Revue Centre de documentation Revues en salle Disponible Quality assessment of heterogeneous training data sets for classification of urban area with Landsat imagery / Neema Nicodemus Lyimo in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 5 (May 2021)
[article]
Titre : Quality assessment of heterogeneous training data sets for classification of urban area with Landsat imagery Type de document : Article/Communication Auteurs : Neema Nicodemus Lyimo, Auteur ; Fang Luo, Auteur ; Qimin Cheng, Auteur ; Hao Peng, Auteur Année de publication : 2021 Article en page(s) : pp 339-348 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] appariement d'images
[Termes IGN] distance euclidienne
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données hétérogènes
[Termes IGN] données localisées des bénévoles
[Termes IGN] données massives
[Termes IGN] données ouvertes
[Termes IGN] image Landsat
[Termes IGN] incertitude des données
[Termes IGN] jeu de données localisées
[Termes IGN] qualité des données
[Termes IGN] système à base de connaissances
[Termes IGN] zone urbaineRésumé : (Auteur) Quality assessment of training samples collected from heterogeneous sources has received little attention in the existing literature. Inspired by Euclidean spectral distance metrics, this article derives three quality measures for modeling uncertainty in spectral information of open-source heterogeneous training samples for classification with Landsat imagery. We prepared eight test case data sets from volunteered geographic information and open government data sources to assess the proposed measures. The data sets have significant variations in quality, quantity, and data type. A correlation analysis verifies that the proposed measures can successfully rank the quality of heterogeneous training data sets prior to the image classification task. In this era of big data, pre-classification quality assessment measures empower research scientists to select suitable data sets for classification tasks from available open data sources. Research findings prove the versatility of the Euclidean spectral distance function to develop quality metrics for assessing open-source training data sets with varying characteristics for urban area classification. Numéro de notice : A2021-366 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.5.339 Date de publication en ligne : 01/05/2021 En ligne : https://doi.org/10.14358/PERS.87.5.339 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97695
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 5 (May 2021) . - pp 339-348[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021051 SL Revue Centre de documentation Revues en salle Disponible Progressive TIN densification with connection analysis for urban Lidar data / Tao Wang in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 3 (March 2021)
[article]
Titre : Progressive TIN densification with connection analysis for urban Lidar data Type de document : Article/Communication Auteurs : Tao Wang, Auteur ; Lianbin Deng, Auteur ; Yuhong Li, Auteur ; Hao Peng, Auteur Année de publication : 2021 Article en page(s) : pp 205 - 213 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] modèle 3D de l'espace urbain
[Termes IGN] pente
[Termes IGN] semis de points
[Termes IGN] Triangulated Irregular NetworkRésumé : (Auteur) Urban lidar data are advantageous for capturing the terrain surface of built-up areas, which can be directly used to provide digital surface models. Cloud points are classified into ground points to obtain digital terrain models. This study proposes a method to improve the progressive triangulated irregular network (TIN ) densification method using a TIN connection analysis algorithm, namely, connection analysis via slope analysis. The proposed method comprises five steps: selection of seed points, connection and slope analysis, increasing the seed points, construction of the TIN model of the seed points, and an iterative construction of the final TIN. Seven data sets from the International Society for Photogrammetry and Remote Sensing Working Group are used to test whether the proposed method can preserve discontinuities of landscapes and reduce omission and total errors by an average of 9% and 5%, respectively; achieving such results can reduce the amount of workload required for result modification during posttreatment, thus decreasing costs. Numéro de notice : A2021-243 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.3.207 Date de publication en ligne : 01/03/2021 En ligne : https://doi.org/10.14358/PERS.87.3.207 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97291
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 3 (March 2021) . - pp 205 - 213[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021031 SL Revue Centre de documentation Revues en salle Disponible 3D hand mesh reconstruction from a monocular RGB image / Hao Peng in The Visual Computer, vol 36 n° 10 - 12 (October 2020)
[article]
Titre : 3D hand mesh reconstruction from a monocular RGB image Type de document : Article/Communication Auteurs : Hao Peng, Auteur ; Chuhua Xian, Auteur ; Yunbo Zhang, Auteur Année de publication : 2020 Article en page(s) : pp pages2227 - 2239 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] estimation de pose
[Termes IGN] image de synthèse
[Termes IGN] image RVB
[Termes IGN] maillage
[Termes IGN] modélisation 3D
[Termes IGN] réalité augmentée
[Termes IGN] réalité virtuelle
[Termes IGN] reconstruction 3D
[Termes IGN] reconstruction d'objet
[Termes IGN] vision monoculaireRésumé : (auteur) Most of the existing methods for 3D hand analysis based on RGB images mainly focus on estimating hand keypoints or poses, which cannot capture geometric details of the 3D hand shape. In this work, we propose a novel method to reconstruct a 3D hand mesh from a single monocular RGB image. Different from current parameter-based or pose-based methods, our proposed method directly estimates the 3D hand mesh based on graph convolution neural network (GCN). Our network consists of two modules: the hand localization and mask generation module, and the 3D hand mesh reconstruction module. The first module, which is a VGG16-based network, is applied to localize the hand region in the input image and generate the binary mask of the hand. The second module takes the high-order features from the first and uses a GCN-based network to estimate the coordinates of each vertex of the hand mesh and reconstruct the 3D hand shape. To achieve better accuracy, a novel loss based on the differential properties of the discrete mesh is proposed. We also use professional software to create a large synthetic dataset that contains both ground truth 3D hand meshes and poses for training. To handle the real-world data, we use the CycleGAN network to transform the data domain of real-world images to that of our synthesis dataset. We demonstrate that our method can produce accurate 3D hand mesh and achieve an efficient performance for real-time applications. Numéro de notice : A2020-596 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00371-020-01908-3 Date de publication en ligne : 14/07/2020 En ligne : https://doi.org/10.1007/s00371-020-01908-3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95936
in The Visual Computer > vol 36 n° 10 - 12 (October 2020) . - pp pages2227 - 2239[article]