Détail de l'auteur
Auteur Chuhua Xian |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
3D hand mesh reconstruction from a monocular RGB image / Hao Peng in The Visual Computer, vol 36 n° 10 - 12 (October 2020)
[article]
Titre : 3D hand mesh reconstruction from a monocular RGB image Type de document : Article/Communication Auteurs : Hao Peng, Auteur ; Chuhua Xian, Auteur ; Yunbo Zhang, Auteur Année de publication : 2020 Article en page(s) : pp pages2227 - 2239 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] estimation de pose
[Termes IGN] image de synthèse
[Termes IGN] image RVB
[Termes IGN] maillage
[Termes IGN] modélisation 3D
[Termes IGN] réalité augmentée
[Termes IGN] réalité virtuelle
[Termes IGN] reconstruction 3D
[Termes IGN] reconstruction d'objet
[Termes IGN] vision monoculaireRésumé : (auteur) Most of the existing methods for 3D hand analysis based on RGB images mainly focus on estimating hand keypoints or poses, which cannot capture geometric details of the 3D hand shape. In this work, we propose a novel method to reconstruct a 3D hand mesh from a single monocular RGB image. Different from current parameter-based or pose-based methods, our proposed method directly estimates the 3D hand mesh based on graph convolution neural network (GCN). Our network consists of two modules: the hand localization and mask generation module, and the 3D hand mesh reconstruction module. The first module, which is a VGG16-based network, is applied to localize the hand region in the input image and generate the binary mask of the hand. The second module takes the high-order features from the first and uses a GCN-based network to estimate the coordinates of each vertex of the hand mesh and reconstruct the 3D hand shape. To achieve better accuracy, a novel loss based on the differential properties of the discrete mesh is proposed. We also use professional software to create a large synthetic dataset that contains both ground truth 3D hand meshes and poses for training. To handle the real-world data, we use the CycleGAN network to transform the data domain of real-world images to that of our synthesis dataset. We demonstrate that our method can produce accurate 3D hand mesh and achieve an efficient performance for real-time applications. Numéro de notice : A2020-596 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00371-020-01908-3 Date de publication en ligne : 14/07/2020 En ligne : https://doi.org/10.1007/s00371-020-01908-3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95936
in The Visual Computer > vol 36 n° 10 - 12 (October 2020) . - pp pages2227 - 2239[article]