Détail de l'éditeur
Sorbonne Université
localisé à :
Paris
|
Documents disponibles chez cet éditeur (6)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Apprentissage de représentations et modèles génératifs profonds dans les systèmes dynamiques / Jean-Yves Franceschi (2022)
Titre : Apprentissage de représentations et modèles génératifs profonds dans les systèmes dynamiques Type de document : Thèse/HDR Auteurs : Jean-Yves Franceschi, Auteur ; Sylvain Lamprier, Directeur de thèse ; Patrick Gallinari, Directeur de thèse Editeur : Paris : Sorbonne Université Année de publication : 2022 Importance : 304 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse soutenue pour obtenir le grade de Docteur en Informatique de Sorbonne UniversitéLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] apprentissage profond
[Termes IGN] classification non dirigée
[Termes IGN] données spatiotemporelles
[Termes IGN] équation différentielle
[Termes IGN] processus stochastique
[Termes IGN] réseau antagoniste génératif
[Termes IGN] réseau neuronal récurrent
[Termes IGN] série temporelle
[Termes IGN] système dynamiqueIndex. décimale : THESE Thèses et HDR Résumé : (auteur) L'essor de l'apprentissage profond trouve notamment sa source dans les avancées scientifiques qu'il a permises en termes d'apprentissage de représentations et de modèles génératifs. Dans leur grande majorité, ces progrès ont cependant été obtenus sur des données textuelles et visuelles statiques, les données temporelles demeurant un défi pour ces méthodes. Compte tenu de leur importance pour l'automatisation croissante de multiples tâches, de plus en plus de travaux en apprentissage automatique s'intéressent aux problématiques d'évolution temporelle. Dans cette thèse, nous étudions ainsi plusieurs aspects de la temporalité et des systèmes dynamiques dans les réseaux de neurones profonds pour l'apprentissage non supervisé de représentations et de modèles génératifs. Premièrement, nous présentons une méthode générale d'apprentissage de représentations non supervisée pour les séries temporelles prenant en compte des besoins pratiques d'efficacité et de flexibilité. Dans un second temps, nous nous intéressons à l'apprentissage pour les séquences structurées de nature spatio-temporelle, couvrant les vidéos et phénomènes physiques. En les modélisant par des équations différentielles paramétrisées par des réseaux de neurones, nous montrons la corrélation entre la découverte de représentations pertinentes d'un côté, et de l'autre la fabrique de modèles prédictifs performants sur ces données. Enfin, nous analysons plus généralement dans une troisième partie les populaires réseaux antagonistes génératifs dont nous décrivons la dynamique d'apprentissage par des équations différentielles, nous permettant d'améliorer la compréhension de leur fonctionnement. Note de contenu : 1- Motivation
2- Time series representation learning
3- State-space predictive models for spatiotemporal data
4- Analysis of GANs’ training dynamics
5- ConclusionNuméro de notice : 15203 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Paris : 2022 DOI : sans En ligne : https://tel.hal.science/tel-03591720 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100472
Titre : Domain adaptation for urban scene segmentation Type de document : Thèse/HDR Auteurs : Antoine Saporta, Auteur ; Matthieu Cord, Directeur de thèse Editeur : Paris : Sorbonne Université Année de publication : 2022 Importance : 147 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de Doctorat de Sorbonne Université, spécialité InformatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification non dirigée
[Termes IGN] entropie
[Termes IGN] Mapillary
[Termes IGN] navigation autonome
[Termes IGN] réseau antagoniste génératif
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantique
[Termes IGN] vision par ordinateurIndex. décimale : THESE Thèses et HDR Résumé : (auteur) This thesis tackles some of the scientific locks of perception systems based on neural networks for autonomous vehicles. This dissertation discusses domain adaptation, a class of tools aiming at minimizing the need for labeled data. Domain adaptation allows generalization to so-called target data that share structures with the labeled so-called source data allowing supervision but nevertheless following a different statistical distribution. First, we study the introduction of privileged information in the source data, for instance, depth labels. The proposed strategy, BerMuDA, bases its domain adaptation on a multimodal representation obtained by bilinear fusion, modeling complex interactions between segmentation and depth. Next, we examine self-supervised learning strategies in domain adaptation, relying on selecting predictions on the unlabeled target data, serving as pseudo-labels. We propose two new selection criteria: first, an entropic criterion with ESL; then, with ConDA, using an estimate of the true class probability. Finally, the extension of adaptation scenarios to several target domains as well as in a continual learning framework is proposed. Two approaches are presented to extend traditional adversarial methods to multi-target domain adaptation: Multi-Dis. and MTKT. In a continual learning setting for which the target domains are discovered sequentially and without rehearsal, the proposed CTKT approach adapts MTKT to this new problem to tackle catastrophic forgetting. Note de contenu : 1- Introduction
2- Unsupervised domain adaptation
3- Leveraging priviledge information for unsupervised domain adaptation
4- Estimating and exploiting confident pseudo-labels for self-training
5- Adaptation to multiple domains
6- ConclusionNuméro de notice : 24079 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Sorbonne Université : 2022 Organisme de stage : Institut des Systèmes Intelligents et de Robotique DOI : sans En ligne : https://theses.hal.science/tel-03886201 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102213
Titre : Generic programming in modern C++ for image processing Type de document : Thèse/HDR Auteurs : Michaël Roynard, Auteur ; Thierry Géraud, Directeur de thèse ; Edwin Carlinet, Directeur de thèse Editeur : Paris : Sorbonne Université Année de publication : 2022 Importance : 237 p. Format : 21 x 30 cm Note générale : bibliographie
Doctoral thesis submitted to fufill the requirements for the degree of Doctor of Sorbonne Université with the doctoral speciality of "Software Engineering and Image Processing"Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Langages informatiques
[Termes IGN] C++
[Termes IGN] langage de programmation
[Termes IGN] morphologie mathématique
[Termes IGN] programmation informatique
[Termes IGN] taxinomie
[Termes IGN] traitement d'imageIndex. décimale : THESE Thèses et HDR Résumé : (auteur) C++ is a multi-paradigm language that enables the initiated programmer to set up efficient image processing algorithms. This language strength comes from several aspects. C++ is high-level, which enables developing powerful abstractions and mixing different programming styles to ease the development. At the same time, C++ is low-level and can fully take advantage of the hardware to deliver the best performance. It is also very portable and highly compatible which allows algorithms to be called from high-level, fast-prototyping languages such as Python or Matlab. One of the most fundamental aspects where C++ really shines is generic programming. Generic programming makes it possible to develop and reuse bricks of software on objects (images) of different natures (types) without performance loss. Nevertheless,conciliating the aspects of genericity, efficiency, and simplicity is not trivial. Modern C++ (post-2011) has brought new features that made the language simpler and more powerful. In this thesis, we first explore one particular C++20aspect: the concepts, in order to build a concrete taxonomy of image related types and algorithms. Second, we explore another addition to C++20, ranges (and views), and we apply this design to image processing algorithms and image types in order to solve issues such as how hard it is to customize/tweak image processing algorithms. Finally, we explore possibilities regarding how we can offer a bridge between static (compile-time) generic C++ code and dynamic (runtime) Python code. We offer our own hybrid solution and benchmark its performance as well as discuss what can be done in the future with JIT technologies. Considering those three axes, we will address the issue regarding the way to conciliate generic programming, efficiency and ease of use. Note de contenu : I Context and History of Generic programming
1- Introduction
2- Generic programming (genericity)
II Applying Generic programming for Image processing in the static world
3- Taxonomy for Image Processing: Image types and algorithms
4- Image views
III Bringing Generic programming to the dynamic world
5- A bridge between the static world and the dynamic world
6- Conclusion and continuationNuméro de notice : 24083 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : PhD thesis : Software Engineering and Image Processing : Sorbonne Université : 2022 Organisme de stage : EPITA DOI : sans En ligne : https://theses.hal.science/tel-03922670 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102391 Unsupervised satellite image time series analysis using deep learning techniques / Ekaterina Kalinicheva (2020)
Titre : Unsupervised satellite image time series analysis using deep learning techniques Type de document : Thèse/HDR Auteurs : Ekaterina Kalinicheva , Auteur ; Maria Trocan, Directeur de thèse Editeur : Paris : Sorbonne Université Année de publication : 2020 Importance : 182 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse pour obtenir le doctorat de la Sorbonne Université, Spécialité InformatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage non-dirigé
[Termes IGN] détection de changement
[Termes IGN] données spatiotemporelles
[Termes IGN] image Sentinel-MSI
[Termes IGN] image SPOT 5
[Termes IGN] réseau neuronal profond
[Termes IGN] réseau neuronal récurrent
[Termes IGN] série temporelle
[Termes IGN] variation saisonnièreIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) Cette thèse présente un ensemble d'algorithmes non-supervisés pour l'analyse générique de séries temporelles d'images satellites (STIS). Nos algorithmes exploitent des méthodes de machine learning et, notamment, les réseaux de neurones afin de détecter les différentes entités spatio-temporelles et leurs changements éventuels dans le temps. Nous visons à identifier trois types de comportement temporel : les zones sans changements, les changements saisonniers, les changements non triviaux (changements permanents comme les constructions, la rotation des cultures agricoles, etc). Par conséquent, nous proposons deux frameworks : pour la détection et le clustering des changements non-triviaux et pour le clustering des changements saisonniers et des zones sans changements. Le premier framework est composé de deux étapes : la détection de changements bi-temporels et leur interprétation dans le contexte multi-temporel avec une approche basée graphes. La détection de changements bi-temporels est faite pour chaque couple d’images consécutives et basée sur la transformation des features avec les autoencodeurs (AEs). A l’étape suivante, les changements à différentes dates qui appartiennent à la même zone géographique forment les graphes d’évolution qui sont par la suite clusterisés avec un modèle AE de réseaux de neurones récurrents. Le deuxième framework présente le clustering basé objets de STIS. Premièrement, la STIS est encodée en image unique avec un AE convolutif 3D multi-vue. Dans un deuxième temps, nous faisons la segmentation en deux étapes en utilisant à la fois l’image encodée et la STIS. Finalement, les segments obtenus sont clusterisés avec leurs descripteurs encodés. Note de contenu : 1. Introduction to Remote Sensing and Satellite Image Analysis
1.1 Introduction
1.2 Remote Sensing Images
1.3 Satellite Missions
1.4 Introduction to Data Mining Applied to Images
2. Machine Learning. Clustering and Anomaly Detection
2.1 Introduction
2.2 Unsupervised Learning
2.3 Clustering
2.4 Anomaly Detection
2.5 Quality Indices
2.6 Discussion
3. Feature Extraction using Deep Learning Techniques
3.1 Introduction
3.2 Deep Learning
3.3 AutoEncoders in Image Processing
3.4 Neural Networks Structure
3.5 Discussion
4. Bi-temporal Change Detection
4.1 Introduction
4.2 Related Works
4.3 Methodology
4.4 Data
4.5 Experiments
4.6 Discussion
5. Multi-temporal Change Detection
5.1 Introduction
5.2 Related Works
5.3 Methodology
5.4 Data
5.5 Experiments
5.6 Conclusion
6. Satellite Image Time Series Clustering
6.1 Introduction
6.2 Related Works
6.3 Methodology
6.4 Data
6.5 Experiments
6.6 Discussion
7. Conclusion
7.1 Thesis Contributions
7.2 Short Term Perspectives
7.3 Long Term Perspectives and LimitationsNuméro de notice : 26536 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Sorbonne université : 2020 Organisme de stage : ISEP Institut Supérieur d'Electronique de Paris nature-HAL : Thèse DOI : sans Date de publication en ligne : 01/03/2021 En ligne : https://tel.archives-ouvertes.fr/tel-03032071/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97681 Satellite remote sensing of the variability of the continental hydrology cycle in the lower Mekong basin over the last two decades / Binh Pham-Duc (2018)
Titre : Satellite remote sensing of the variability of the continental hydrology cycle in the lower Mekong basin over the last two decades Type de document : Thèse/HDR Auteurs : Binh Pham-Duc, Auteur ; Catherine Prigent, Directeur de thèse ; Filipe Aires, Directeur de thèse Editeur : Paris : Sorbonne Université Année de publication : 2018 Importance : 234 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de doctorat de Sciences de l'Environnement, Sorbonne UniversitéLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte hydrographique
[Termes IGN] changement climatique
[Termes IGN] classification par réseau neuronal
[Termes IGN] climat tropical
[Termes IGN] corrélation temporelle
[Termes IGN] eau de surface
[Termes IGN] image Aqua-MODIS
[Termes IGN] image Landsat-8
[Termes IGN] image Sentinel-SAR
[Termes IGN] Mekong (fleuve)
[Termes IGN] modèle hydrographique
[Termes IGN] précipitation
[Termes IGN] série temporelle
[Termes IGN] surveillance hydrologique
[Termes IGN] télédétection spatiale
[Termes IGN] variation saisonnièreIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Surface water is essential for all forms of life since it is involved in almost all processes of life on Earth. Quantifying and monitoring surface water and its variations are important because of the strong connections between surface water, other hydrological components (groundwater and soil moisture, for example), and the changing climate system. Satellite remote sensing of land surface hydrology has shown great potential in studying hydrology from space at regional and global scales. In this thesis, different techniques using several types of satellite estimates have been made to study the variation of surface water, as well as other hydrological components in the lower Mekong basin (located in Vietnam and Cambodia) over the last two decades. This thesis focuses on four aspects. First, the use of visible/infrared MODIS/Terra satellite observations to monitor surface water in the lower Mekong basin is investigated. Four different classification methods are applied, and their results of surface water maps show similar seasonality and dynamics. The most suitable classification method, that is specially designed for tropical regions, is chosen to produce regular surface water maps of the region at 500 m spatial resolution, from January 2001 to present time. Compared to reference data, the MODIS-derived surface water time series show the same amplitude, and very high temporal correlation for the 2001-2007 period (> 95%). Second, the use of SAR Sentinel-1 satellite observations for the same objective is studied. Optical satellite data are replaced by SAR satellite data to benefit the ability of their microwave wavelengths to pass through clouds. Free-cloud Landsat-8 satellite imagery are set as targets to train and optimize a Neural Network (NN). Predicted surface water maps (30 m spatial resolution) are built for the studied region from January 2015 to present time, by applying a threshold (0.85) to the output of the NN. Compared to reference free-cloud Landsat-8 surface water maps, results derived from the NN show high spatial correlation (_90%), as well as true positive detection of water pixels (_90%). Predicted SAR surface water maps are also compared to floodability maps derived from topography data, and results show high consistency between the two independent maps with 98% of SAR-derived water pixels located in areas with a high probability of inundation (>60%). Third, the surface water volume variation is calculated as the product of the surface water extent and the surface water height. The two components are validated with other hydrological products, and results show good consistencies. The surface water height are linearly interpolated over inundated areas to build monthly maps at 500 m spatial resolution, then are used to calculate changes in the surface water volume. Results show high correlations when compared to variation of the total land surface water volume derived from GRACE data (95%), and variation of the in situ discharge estimates (96%). Fourth, two monthly global multi-satellite surface water products (GIEMS & SWAMPS) are compared together over the 1993-2007 period at regional and global scales. Ancillary data are used to support the analyses when available. Similar temporal dynamics of global surface water are observed when compared GIEMS and SWAMPS, but _50% of the SWAMPS inundated surfaces are located along the coast line. Over the Amazon and Orinoco basins, GIEMS and SWAMPS have very high water surface time series correlations (95% and 99%, respectively), but SWAMPS maximum water extent is just a half of what observed from GIEMS and SAR estimates. SWAMPS fails to capture surface water dynamics over the Niger basin since its surface water seasonality is out of phase with both GIEMS- and MODIS-derived water extent estimates, as well as with in situ river discharge data. Note de contenu : 1- Introduction
2- Surface water monitoring within the Mekong Delta and Cambodia using visible and Infrared MODIS satellite
observations
3- Surface water monitoring within the Mekong Delta and Cambodia using SAR Sentinel-1 satellite observations
4- Toward the analyses of the change in surface water volume within the lower Mekong Delta
5- Comparison between Global Terrestrial Surface Water datasets
6- Conclusions and perspectivesNuméro de notice : 25731 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Sciences de l'Environnement : Observatoire de Paris : 2018 Organisme de stage : Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique LERMA (Observatoire de Paris) nature-HAL : Thèse DOI : sans En ligne : https://tel.archives-ouvertes.fr/tel-02109003 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94914 Sparse signal modeling: Application to image compression, Image error concealment and compressed sensing / Ali Akbari (2018)Permalink