Détail de l'auteur
Auteur Rabi N. Sahoo |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Application of thermal imaging and hyperspectral remote sensing for crop water deficit stress monitoring / Gopal Krishna in Geocarto international, vol 36 n° 5 ([15/03/2021])
[article]
Titre : Application of thermal imaging and hyperspectral remote sensing for crop water deficit stress monitoring Type de document : Article/Communication Auteurs : Gopal Krishna, Auteur ; Rabi N. Sahoo, Auteur ; Prafull Singh, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 481 - 498 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] image hyperspectrale
[Termes IGN] image thermique
[Termes IGN] indice de stress
[Termes IGN] Oryza (genre)
[Termes IGN] réflectance spectrale
[Termes IGN] régression des moindres carrés partiels
[Termes IGN] rizière
[Termes IGN] sécheresse
[Termes IGN] stress hydrique
[Termes IGN] teneur en eau de la végétationRésumé : (auteur) Water deficit in crops induces a stress that may ultimately result in low production. Identification of response of genotypes towards water deficit stress is very crucial for plant phenotyping. The study was carried out with the objective to identify the response of different rice genotypes to water deficit stress. Ten rice genotypes were grown each under water deficit stress and well watered or nonstress conditions. Thermal images coupled with visible images were recorded to quantify the stress and response of genotypes towards stress, and relative water content (RWC) synchronized with image acquisition was also measured in the lab for rice leaves. Synced with thermal imaging, Canopy reflectance spectra from same genotype fields were also recorded. For quantification of water deficit stress, Crop Water Stress Index (CWSI) was computed and its mode values were extracted from processed thermal imageries. It was ascertained from observations that APO and Pusa Sugandha-5 genotypes exhibited the highest resistance to the water deficit stress or drought whereas CR-143, MTU-1010, and Pusa Basmati-1 genotypes ascertained the highest sensitiveness to the drought. The study reveals that there is an effectual relationship (R2 = 0.63) between RWC and CWSI. The relationship between canopy reflectance spectra and CWSI was also established through partial least square regression technique. A very efficient relationship (calibration R2 = 0.94 and cross-validation R2 = 0.71) was ascertained and 10 most optimal wavebands related to water deficit stress were evoked from hyperspectral data resampled at 5 nm wavelength gap. The identified ten most optimum wavebands can contribute in the quick detection of water deficit stress in crops. This study positively contributes towards the identification of drought tolerant and drought resistant genotypes of rice and may provide valuable input for the development of drought-tolerant rice genotypes in future. Numéro de notice : A2021-250 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1618922 Date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1618922 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97272
in Geocarto international > vol 36 n° 5 [15/03/2021] . - pp 481 - 498[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2021051 RAB Revue Centre de documentation En réserve L003 Disponible Comparative analysis of index and chemometric techniques-based assessment of leaf area index (LAI) in wheat through field spectroradiometer, Landsat-8, Sentinel-2 and Hyperion bands / Bappa Das in Geocarto international, vol 35 n° 13 ([01/10/2020])
[article]
Titre : Comparative analysis of index and chemometric techniques-based assessment of leaf area index (LAI) in wheat through field spectroradiometer, Landsat-8, Sentinel-2 and Hyperion bands Type de document : Article/Communication Auteurs : Bappa Das, Auteur ; Rabi N. Sahoo, Auteur ; Sourabh Pargal, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1415 - 1432 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] blé (céréale)
[Termes IGN] canopée
[Termes IGN] image EO1-Hyperion
[Termes IGN] image hyperspectrale
[Termes IGN] image Landsat-8
[Termes IGN] image Sentinel-MSI
[Termes IGN] indice de végétation
[Termes IGN] Leaf Area Index
[Termes IGN] modèle de régression
[Termes IGN] réflectance spectrale
[Termes IGN] régression des moindres carrés partiels
[Termes IGN] séparateur à vaste marge
[Termes IGN] spectroradiomètreRésumé : (auteur) Successful retrieval of leaf area index (LAI) from hyperspectral remote sensing relies on the proper selection of indices or multivariate models. The objectives of the research work were to identify best vegetation index and multivariate model based on canopy reflectance and LAI measured at different growth stages of wheat. Comparison of existing indices revealed optimized soil-adjusted vegetation index (OSAVI) as the best index based on R2 of calibration, validation and root mean square error of validation. Proposed ratio index (RI; R670, R845) and normalized difference index (NDI; R670, R845) provided comparable performance with the existing vegetation indices (R2 = 0.65 and 0.62 for RI and NDI, respectively, during validation). Among the multivariate models, partial least squares regression (PLSR) model with Hyperion band configuration performed the best during validation (R2 = 0.80 and RMSE = 0.58 m2 m−2). Our results manifested the opportunities for developing biophysical products based on satellite sensors. Numéro de notice : A2020-607 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1581271 Date de publication en ligne : 28/03/2019 En ligne : https://doi.org/10.1080/10106049.2019.1581271 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95967
in Geocarto international > vol 35 n° 13 [01/10/2020] . - pp 1415 - 1432[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2020101 RAB Revue Centre de documentation En réserve L003 Disponible