Détail de l'auteur
Auteur Daoqin Tong |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A general model for creating robust choropleth maps / Wangshu Mu in Computers, Environment and Urban Systems, vol 96 (September 2022)
[article]
Titre : A general model for creating robust choropleth maps Type de document : Article/Communication Auteurs : Wangshu Mu, Auteur ; Daoqin Tong, Auteur Année de publication : 2022 Article en page(s) : n° 101850 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie
[Termes IGN] carte choroplèthe
[Termes IGN] incertitude des données
[Termes IGN] méthode du maximum de vraisemblance (estimation)
[Termes IGN] méthode robuste
[Termes IGN] optimisation par essaim de particules
[Termes IGN] programmation dynamiqueRésumé : (auteur) Choropleth maps visualize areal geographical data by grouping data into a few map classes and assigning different colors, shades, or patterns. Recent studies show that data uncertainty, commonly observed in real-life applications, should also be accounted for when determining the best classification scheme. Due to data uncertainty, a few studies note that map units might be placed in a wrong class, and the concept of map robustness has been introduced to minimize such misplacement. Recently, an algorithm has been developed to integrate robustness into the design of the optimal map classification scheme. However, the existing algorithm has two limitations: first, it is only suitable for certain robustness metrics. Second, when identifying the optimal class breaks, the existing algorithm requires predefined candidate class break values, which might lead to sub-optimal solutions. This paper resolves these issues by proposing a new model, namely, the Continuous Robust Map Classification Problem (CRMCP), and the associated solution approach. The CRMCP allows mapmakers to customize robustness metrics according to their data and applications. In addition, a particle swarm optimization algorithm is developed to solve the CRMCP. The model and algorithm are tested using American Community Survey data. Test results suggest that the new approach can find better solutions than the existing algorithm. The study improves the usability of choropleth maps when uncertain geographical attributes are involved and allows spatial analysts and decision-makers to incorporate robustness into the mapmaking process more flexibly. Numéro de notice : A2022-514 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101850 Date de publication en ligne : 28/06/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101850 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101055
in Computers, Environment and Urban Systems > vol 96 (September 2022) . - n° 101850[article]Mapping uncertain geographical attributes: incorporating robustness into choropleth classification design / Wangshu Mu in International journal of geographical information science IJGIS, vol 34 n° 11 (November 2020)
[article]
Titre : Mapping uncertain geographical attributes: incorporating robustness into choropleth classification design Type de document : Article/Communication Auteurs : Wangshu Mu, Auteur ; Daoqin Tong, Auteur Année de publication : 2020 Article en page(s) : pp 2204 - 2224 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie
[Termes IGN] attribut géomètrique
[Termes IGN] carte choroplèthe
[Termes IGN] conception cartographique
[Termes IGN] erreur d'échantillon
[Termes IGN] incertitude d'attribut
[Termes IGN] incertitude des données
[Termes IGN] inférence statistique
[Termes IGN] méthode robuste
[Termes IGN] optimisation (mathématiques)Résumé : (auteur) Choropleth mapping provides a simple but effective visual presentation of geographical data. Traditional choropleth mapping methods assume that data to be displayed are certain. This may not be true for many real-world problems. For example, attributes generated based on surveys may contain sampling and non-sampling error, and results generated using statistical inferences often come with a certain level of uncertainty. In recent years, several studies have incorporated uncertain geographical attributes into choropleth mapping with a primary focus on identifying the most homogeneous classes. However, no studies have yet accounted for the possibility that an areal unit might be placed in a wrong class due to data uncertainty. This paper addresses this issue by proposing a robustness measure and incorporating it into the optimal design of choropleth maps. In particular, this study proposes a discretization method to solve the new optimization problem along with a novel theoretical bound to evaluate solution quality. The new approach is applied to map the American Community Survey data. Test results suggest a tradeoff between within-class homogeneity and robustness. The study provides an important perspective on addressing data uncertainty in choropleth map design and offers a new approach for spatial analysts and decision-makers to incorporate robustness into the mapmaking process. Numéro de notice : A2020-614 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1726921 Date de publication en ligne : 16/02/2020 En ligne : https://doi.org/10.1080/13658816.2020.1726921 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95987
in International journal of geographical information science IJGIS > vol 34 n° 11 (November 2020) . - pp 2204 - 2224[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020111 RAB Revue Centre de documentation En réserve L003 Disponible