Détail de l'éditeur
Université de Lyon |
Documents disponibles chez cet éditeur (4)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Titre : Construction de MNE adaptés à la simulation d’inondations Type de document : Mémoire Auteurs : Jérémy Kalsron, Auteur ; Laurence Jolivet , Encadrant ; Olivier Payrastre, Encadrant Editeur : Université de Lyon Année de publication : 2019 Importance : 51 p. Note générale : Master 1 Géographies Numériques Langues : Français (fre) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] inondation
[Termes IGN] modèle de simulation
[Termes IGN] modèle numérique de surfaceIndex. décimale : MASTX Mémoires de masters divers Résumé : pas de résumé Note de contenu : Introduction
1- Contexte et objectifs du stage
2- Etat de l'art sur les MNT et leurs utilisations
3- Approche générale
4- Délimitation des berges
5- Rétablissement de l'écoulement
6- Ajout d'obstacles en lit majeur
ConclusionNuméro de notice : 17691 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Mémoire masters divers Organisme de stage : LASTIG (IGN) Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99151 Documents numériques
peut être téléchargé
Construction de MNE ... - pdf auteurAdobe Acrobat PDF Cartographier l'occupation du sol à grande échelle : optimisation de la photo-interprétation par segmentation d'image / Maxime Vitter (2018)
Titre : Cartographier l'occupation du sol à grande échelle : optimisation de la photo-interprétation par segmentation d'image Type de document : Thèse/HDR Auteurs : Maxime Vitter, Auteur ; Bernard Etlicher, Directeur de thèse ; Christine Jacqueminet, Directeur de thèse Editeur : Université de Lyon Année de publication : 2018 Autre Editeur : Saint-Etienne : Université Jean-Monnet-Saint-Etienne Importance : 313 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de Doctorat de l'Université de Lyon préparée au sein de l'Université Jean Monnet de Saint-Etienne, GéographieLangues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] base de données d'occupation du sol
[Termes IGN] carte d'occupation du sol
[Termes IGN] Corine Land Cover
[Termes IGN] eCognition
[Termes IGN] formatage
[Termes IGN] image à très haute résolution
[Termes IGN] mosaïque d'images
[Termes IGN] photo-interprétation
[Termes IGN] photo-interprétation assistée par ordinateur
[Termes IGN] recherche et développement
[Termes IGN] segmentation d'imageIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Depuis une quinzaine d’années, l’émergence des données de télédétection à Très Haute Résolution Spatiale (THRS) et la démocratisation des Systèmes d’Information Géographique (SIG) aident à répondre aux nouveaux besoins croissants d’informations spatialisées. Le développement de nouvelles méthodes de cartographie offre une opportunité pour comprendre et anticiper les mutations des surfaces terrestres aux grandes échelles, jusqu’ici mal connues. En France, l’emploi de bases de données spatialisées sur l’occupation du sol à grande échelle (BD Ocsol GE) est devenu incontournable dans les opérations courantes de planification et de suivi des territoires. Pourtant, l’acquisition de ce type de bases de données spatialisées est encore un besoin difficile à satisfaire car les demandes portent sur des productions cartographiques sur-mesure, adaptées aux problématiques locales des territoires. Face à cette demande croissante, les prestataires réguliers de ce type de données cherchent à optimiser les procédés de fabrication avec des techniques récentes de traitements d’image. Cependant, la Photo-Interprétation Assistée par Ordinateur (PIAO) reste la méthode privilégiée des prestataires. En raison de sa grande souplesse, elle répond toujours au besoin de cartographie aux grandes échelles, malgré son coût important. La substitution de la PIAO par des méthodes de production entièrement automatisées est rarement envisagée. Toutefois, les développements récents en matière de segmentation d’images peuvent contribuer à l’optimisation de la pratique de la photo-interprétation. Cette thèse présente ainsi une série d’outils (ou modules) qui participent à l’élaboration d’une assistance à la digitalisation pour l’exercice de photo-interprétation d’une BD Ocsol GE. L’assistance se traduit par la réalisation d’un prédécoupage du paysage à partir d’une segmentation menée sur une image THRS. L’originalité des outils présentés est leur intégration dans un contexte de production fortement contraint. La construction des modules est conduite à travers trois prestations cartographiques à grande échelle commandités par des entités publiques. L’apport de ces outils d’automatisation est analysé à travers une analyse comparative entre deux procédures de cartographie : l’une basée sur une démarche de photo-interprétation entièrement manuelle et la seconde basée sur une photo-interprétation assistée en amont par une segmentation numérique. Les gains de productivité apportés par la segmentation sont, évalués à l’aide d’indices quantitatifs et qualitatifs, sur des configurations paysagères différentes. À des degrés divers, il apparaît que quelque soit le type de paysage cartographié, les gains liés à la cartographie assistée sont substantiels. Ces gains sont discutés, à la fois, d’un point de vue technique et d’un point de vue thématique dans une perspective commerciale. Note de contenu : Introduction générale
Première partie- Les enjeux de production de la cartographie d’occupation du sol à grande échelle en France
Deuxième partie- Optimiser l’exercice de photo-interprétation
Troisième partie- Productivité de la photo-interprétation assistée par segmentation d’image
Conclusion généraleNuméro de notice : 25839 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Géographie : Université de Lyon : 2018 Organisme de stage : ASCONIT nature-HAL : Thèse DOI : sans En ligne : https://tel.hal.science/tel-02094240 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95200 Réseaux de neurones convolutifs pour la segmentation sémantique et l'apprentissage d'invariants de couleur / Damien Fourure (2017)
Titre : Réseaux de neurones convolutifs pour la segmentation sémantique et l'apprentissage d'invariants de couleur Type de document : Thèse/HDR Auteurs : Damien Fourure, Auteur ; Alain Trémeau, Directeur de thèse ; Christian Wolf, Directeur de thèse Editeur : Université de Lyon Année de publication : 2017 Autre Editeur : Saint-Etienne : Université Jean-Monnet-Saint-Etienne Importance : 178 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de Doctorat de l'Université de Lyon opérée au sein de l’Université Jean Monnet de Saint-Étienne, Spécialité de doctorat : InformatiqueLangues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] architecture de réseau
[Termes IGN] chromatopsie
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] estimation de pose
[Termes IGN] intelligence artificielle
[Termes IGN] Perceptron multicouche
[Termes IGN] segmentation sémantique
[Termes IGN] vision par ordinateurIndex. décimale : THESE Thèses et HDR Résumé : (auteur) La vision par ordinateur est un domaine interdisciplinaire étudiant la manière dont les ordinateurs peuvent acquérir une compréhension de haut niveau à partir d’images ou de vidéos numériques. En intelligence artificielle, et plus précisément en apprentissage automatique, domaine dans lequel se positionne cette thèse, la vision par ordinateur passe par l’extraction de caractéristiques présentes dans les images puis par la généralisation de concepts liés à ces caractéristiques. Ce domaine de recherche est devenu très populaire ces dernières années, notamment grâce aux résultats des réseaux de neurones convolutifs à la base des méthodes dites d’apprentissage profond. Aujourd’hui les réseaux de neurones permettent, entre autres, de reconnaître les différents objets présents dans une image, de générer des images très réalistes ou même de battre les champions au jeu de Go. Leurs performances ne s’arrêtent d’ailleurs pas au domaine de l’image puisqu’ils sont aussi utilisés dans d’autres domaines tels que le traitement du langage naturel (par exemple en traduction automatique) ou la reconnaissance de son. Dans cette thèse, nous étudions les réseaux de neurones convolutifs afin de développer des architectures et des fonctions de coûts spécialisées à des tâches aussi bien de bas niveau (la constance chromatique) que de haut niveau (la segmentation sémantique d’image). Une première contribution s’intéresse à la tâche de constance chromatique. En vision par ordinateur, l’approche principale consiste à estimer la couleur de l’illuminant puis à supprimer son impact sur la couleur perçue des objets. Les expériences que nous avons menées montrent que notre méthode permet d’obtenir des performances compétitives avec l’état de l’art. Néanmoins, notre architecture requiert une grande quantité de données d’entraînement. Afin de corriger en parti ce problème et d’améliorer l’entraînement des réseaux de neurones, nous présentons plusieurs techniques d’augmentation artificielle de données. Nous apportons également deux contributions sur une problématique de haut niveau : la segmentation sémantique d’image. Cette tâche, qui consiste à attribuer une classe sémantique à chacun des pixels d’une image, constitue un défi en vision par ordinateur de par sa complexité. D’une part, elle requiert de nombreux exemples d’entraînement dont les vérités terrains sont coûteuses à obtenir. D’autre part, elle nécessite l’adaptation des réseaux de neurones convolutifs traditionnels afin d’obtenir une prédiction dite dense, c’est-à-dire, une prédiction pour chacun pixel présent dans l’image d’entrée. Pour résoudre la difficulté liée à l’acquisition de données d’entrainements, nous proposons une approche qui exploite simultanément plusieurs bases de données annotées avec différentes étiquettes. Pour cela, nous définissons une fonction de coût sélective. Nous développons aussi une approche dites d’auto-contexte capturant d’avantage les corrélations existantes entre les étiquettes des différentes bases de données. Finalement, nous présentons notre troisième contribution : une nouvelle architecture de réseau de neurones convolutifs appelée GridNet spécialisée pour la segmentation sémantique d’image. Contrairement aux réseaux traditionnels, notre architecture est implémentée sous forme de grille 2D permettant à plusieurs flux interconnectés de fonctionner à différentes résolutions. Afin d’exploiter la totalité des chemins de la grille, nous proposons une technique d’entraînement inspirée du dropout. En outre, nous montrons empiriquement que notre architecture généralise de nombreux réseaux bien connus de l’état de l’art. Nous terminons par une analyse des résultats empiriques obtenus avec notre architecture qui, bien qu’entraînée avec une initialisation aléatoire des poids, révèle de très bonnes performances, dépassant les approches populaires souvent pré-entraînés. Note de contenu : 1- Introduction
2- Les réseaux de neurones convolutifs pour la vision par ordinateur
3- Sous-échantillonnage mixte appliqué à la constance chromatique
4- Segmentation sémantique d’images
5- Une fonction de coût sélective
6- GridNet, une architecture spécialisée pour la segmentation sémantique
7- Conclusion et PerspectivesNuméro de notice : 25838 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Spécialité : Informatique : Lyon : 2017 Organisme de stage : Université Jean Monnet de Saint-Étienne + LIRIS nature-HAL : Thèse DOI : sans En ligne : https://tel.archives-ouvertes.fr/tel-02111472/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95192 Single Image Super-Resolution based on Neural Networks for text and face recognition / Clément Peyrard (2017)
Titre : Single Image Super-Resolution based on Neural Networks for text and face recognition Type de document : Thèse/HDR Auteurs : Clément Peyrard, Auteur ; Christophe Garcia, Auteur Editeur : Université de Lyon Année de publication : 2017 Autre Editeur : Lyon : Institut National des Sciences Appliquées INSA Lyon Importance : 187 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de Doctorat de l'Université de Lyon opérée au sein de INSA de Lyon, discipline : InformatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage profond
[Termes IGN] artefact
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de visage
[Termes IGN] image à basse résolution
[Termes IGN] image à haute résolution
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] reconnaissance automatique
[Termes IGN] reconnaissance de caractères
[Termes IGN] reconnaissance de formesIndex. décimale : THESE Thèses et HDR Résumé : (auteur) This thesis is focussed on super-resolution (SR) methods for improving automatic recognition system (Optical Character Recognition, face recognition) in realistic contexts. SR methods allow to generate high resolution images from low resolution ones. Unlike upsampling methods such as interpolation, they restore spatial high frequencies and compensate artefacts such as blur or jaggy edges. In particular, example-based approaches learn and model the relationship between low and high resolution spaces via pairs of low and high resolution images. Artificial Neural Networks are among the most efficient systems to address this problem. This work demonstrate the interest of SR methods based on neural networks for improved automatic recognition systems. By adapting the data, it is possible to train such Machine Learning algorithms to produce high-resolution images. Convolutional Neural Networks are especially efficient as they are trained to simultaneously extract relevant non-linear features while learning the mapping between low and high resolution spaces. On document text images, the proposed method improves OCR accuracy by +7.85 points compared with simple interpolation. The creation of an annotated image dataset and the organisation of an international competition (ICDAR2015) highlighted the interest and the relevance of such approaches. Moreover, if a priori knowledge is available, it can be used by a suitable network architecture. For facial images, face features are critical for automatic recognition. A two step method is proposed in which image resolution is first improved, followed by specialised models that focus on the essential features. An off-the-shelf face verification system has its performance improved from +6.91 up to +8.15 points. Finally, to address the variability of real-world low-resolution images, deep neural networks allow to absorb the diversity of the blurring kernels that characterise the low-resolution images. With a single model, high-resolution images are produced with natural image statistics, without any knowledge of the actual observation model of the low-resolution image. Note de contenu : 1- Introduction
2- Definitions and application domains
3- Literature review
4- Text single image super-resolution
5- Face single image super-resolution
6- Blind and robust super-resolution
7- ConclusionNuméro de notice : 25863 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Discipline : Informatique : Lyon 2017 Organisme de stage : LIRIS nature-HAL : Thèse DOI : sans En ligne : http://www.theses.fr/2017LYSEI083 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95506