Détail de l'auteur
Auteur Rachel Loehman |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Bioclimatic modeling of potential vegetation types as an alternative to species distribution models for projecting plant species shifts under changing climates / Robert E. Keane in Forest ecology and management, vol 477 ([01/12/2020])
[article]
Titre : Bioclimatic modeling of potential vegetation types as an alternative to species distribution models for projecting plant species shifts under changing climates Type de document : Article/Communication Auteurs : Robert E. Keane, Auteur ; Lisa M. Holsinger, Auteur ; Rachel Loehman, Auteur Année de publication : 2020 Article en page(s) : 12 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] carte de la végétation
[Termes IGN] changement climatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] distribution spatiale
[Termes IGN] écosystème
[Termes IGN] espèce végétale
[Termes IGN] habitat forestier
[Termes IGN] modèle de simulation
[Termes IGN] modèle dynamique
[Termes IGN] modélisation de la forêt
[Termes IGN] Montana (Etats-Unis)
[Termes IGN] substitution
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Land managers need new tools for planning novel futures due to climate change. Species distribution modeling (SDM) has been used extensively to predict future distributions of species under different climates, but their map products are often too coarse for fine-scale operational use. In this study we developed a flexible, efficient, and robust method for mapping current and future distributions and abundances of vegetation species and communities at the fine spatial resolutions that are germane to land management. First, we mapped Potential Vegetation Types (PVTs) using conventional statistical modeling techniques (Random Forests) that used bioclimatic ecosystem process and climate variables as predictors. We obtained over 50% accuracy across 13 mapped PVTs for our study area. We then applied future climate projections as climate input to the Random Forest model to generate future PVT maps, and used field data describing the occurrence of tree and non-tree species in each PVT category to model and map species distribution for current and future climate. These maps were then compared to two previous SDM mapping efforts with over 80% agreement and equivalent accuracy. Because PVTs represent the biophysical potential of the landscape to support vegetation communities as opposed to the vegetation that currently exists, they can be readily linked to climate forecasts and correlated with other, climate-sensitive ecological processes significant in land management, such as fire regimes and site productivity. Numéro de notice : A2020-624 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2020.118498 Date de publication en ligne : 18/08/2020 En ligne : https://doi.org/10.1016/j.foreco.2020.118498 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96022
in Forest ecology and management > vol 477 [01/12/2020] . - 12 p.[article]