Détail de l'auteur
Auteur Ranjith Gopalakrishnan |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
The utility of fused airborne laser scanning and multispectral data for improved wind damage risk assessment over a managed forest landscape in Finland / Ranjith Gopalakrishnan in Annals of Forest Science, vol 77 n° 4 (December 2020)
[article]
Titre : The utility of fused airborne laser scanning and multispectral data for improved wind damage risk assessment over a managed forest landscape in Finland Type de document : Article/Communication Auteurs : Ranjith Gopalakrishnan, Auteur ; Petteri Packalen, Auteur ; Veli-Pekka Ikonen, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 18 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] cartographie des risques
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Finlande
[Termes IGN] forêt
[Termes IGN] forêt boréale
[Termes IGN] image multibande
[Termes IGN] modèle de simulation
[Termes IGN] risque naturel
[Termes IGN] tempête
[Termes IGN] vent
[Termes IGN] zone à risqueRésumé : (auteur) Key message: The potential of airborne laser scanning (ALS) and multispectral remote sensing data to aid in generating improved wind damage risk maps over large forested areas is demonstrated. This article outlines a framework to generate such maps, primarily utilizing the horizontal structural information contained in the ALS data. Validation was done over an area in Eastern Finland that had experienced sporadic wind damage.
Context: Wind is the most prominent disturbance element for Finnish forests. Hence, tools are needed to generate wind damage risk maps for large forested areas, and their possible changes under planned silvicultural operations.
Aims: (1) How effective are ALS-based forest variables (e.g. distance to upwind forest stand edge, gap size) for identifying high wind damage risk areas? (2) Can robust estimates of predicted critical wind speeds for uprooting of trees be derived from these variables? (3) Can these critical wind speed estimates be improved using wind multipliers, which factor in topography and terrain roughness effects?
Methods: We first outline a framework to generate several wind damage risk–related parameters from remote sensing data (ALS + multispectral). Then, we assess if such parameters have predictive power. That is, whether they help differentiate between damaged and background points. This verification exercise used 42 wind damaged points spread over a large area.
Results: Parameters derived from remote sensing data are shown to have predictive power. Risk models based on critical wind speeds are not that robust, but show potential for improvement.
Conclusion: Overall, this work described a framework to get several wind risk–related parameters from remote sensing data. These parameters are shown to have potential in generating wind damage risk maps over large forested areas.Numéro de notice : A2020-629 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s13595-020-00992-8 Date de publication en ligne : 09/10/2020 En ligne : https://doi.org/10.1007/s13595-020-00992-8 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96045
in Annals of Forest Science > vol 77 n° 4 (December 2020) . - 18 p.[article]