Détail de l'auteur
Auteur Niangang Jiao |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A generic framework for improving the geopositioning accuracy of multi-source optical and SAR imagery / Niangang Jiao in ISPRS Journal of photogrammetry and remote sensing, vol 169 (November 2020)
[article]
Titre : A generic framework for improving the geopositioning accuracy of multi-source optical and SAR imagery Type de document : Article/Communication Auteurs : Niangang Jiao, Auteur ; Feng Wang, Auteur ; Hongjian You, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 377 - 388 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] chaîne de traitement
[Termes IGN] correction géométrique
[Termes IGN] étalonnage géométrique
[Termes IGN] géolocalisation
[Termes IGN] image Gaofen
[Termes IGN] image Jilin
[Termes IGN] image optique
[Termes IGN] image radar moirée
[Termes IGN] image satellite
[Termes IGN] point d'appui
[Termes IGN] précision géométrique (imagerie)Résumé : (auteur) To date, numerous Earth observation datasets from different types of satellites have been widely used in photogrammetric fields, including urban 3D modelling and geographic information systems. The development of small satellites has provided a new way to obtain repeated observations in a short period. However, compared with that of standard satellite imagery, the geometric performance of imagery from small satellites is relatively poor, restricting their photogrammetric applications. Traditional methods can improve the accuracy of optical images with the addition of well-distributed ground control points (GCPs), which require considerable financial and human resources. The collection of multi-view datasets is an alternative method for geometric processing without GCPs, but relies heavily on the stability and revisit period of satellite platforms. Therefore, this paper presents a framework for improving the geopositioning accuracy of multi-source datasets obtained from optical and synthetic aperture radar (SAR) satellites, and a novel heterogeneous weight strategy is proposed based on an analysis of the geometric error sources of SAR and optical images. The geometric performance of multi-source optical imagery from the Jilin-1 (JL-1) small satellite constellation is evaluated and analysed first, and then Gaofen-3 (GF-3) SAR images are calibrated based on statistical analysis for the production of virtual control points (VCPs). Based on our proposed heterogeneous weight strategy, multi-source optical and SAR images are integrated to improve the geopositioning accuracy. Experimental results indicate that our proposed model can achieve the best performance compared with other popular models, producing an accuracy of approximately 3 m in planimetry and 2 m in height, thereby providing a generic way to synergistically use multi-source remote sensing data. Numéro de notice : A2020-642 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.09.017 Date de publication en ligne : 12/10/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.09.017 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96066
in ISPRS Journal of photogrammetry and remote sensing > vol 169 (November 2020) . - pp 377 - 388[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020113 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020112 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt