Détail de l'auteur
Auteur Hongjian You |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
STC-Det: A slender target detector combining shadow and target information in optical satellite images / Zhaoyang Huang in Remote sensing, vol 13 n° 20 (October-2 2021)
[article]
Titre : STC-Det: A slender target detector combining shadow and target information in optical satellite images Type de document : Article/Communication Auteurs : Zhaoyang Huang, Auteur ; Feng Wang, Auteur ; Hongjian You, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 4183 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement automatique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] détection de cible
[Termes IGN] fusion de données
[Termes IGN] image satellite
[Termes IGN] ombreRésumé : (auteur) Object detection has made great progress. However, due to the unique imaging method of optical satellite remote sensing, the detection of slender targets is still insufficient. Specifically, the perspective of optical satellites is small, and the characteristics of slender targets are severely lost during imaging, resulting in insufficient detection task information; at the same time, the appearance of slender targets in the image is greatly affected by the satellite perspective, which is likely to cause insufficient generalization capabilities of conventional detection models. In response to these two points, we have made some improvements. First, in this paper, we introduce the shadow as auxiliary information to complement the trunk features of the target lost in imaging. Second, to reduce the impact of satellite perspective on imaging, in this paper, we use the characteristic that shadow information is not affected by satellite perspective to design STC-Det. STC-Det treats the shadow and the target as two different types of targets and uses the shadow information to assist the detection, reducing the impact of the satellite perspective on detection. Among them, in order to improve the performance of STC-Det, we propose an automatic matching method (AMM) of shadow and target and a feature fusion method (FFM). Finally, this paper proposes a new method to calculate the heatmaps of detectors, which verifies the effectiveness of the proposed network in a visual way. Experiments show that when the satellite perspective is variable, the precision of STC-Det is increased by 1.7%, and when the satellite perspective is small, the precision of STC-Det is increased by 5.2%. Numéro de notice : A2021-804 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13204183 Date de publication en ligne : 19/10/2021 En ligne : https://doi.org/10.3390/rs13204183 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98860
in Remote sensing > vol 13 n° 20 (October-2 2021) . - n° 4183[article]A generic framework for improving the geopositioning accuracy of multi-source optical and SAR imagery / Niangang Jiao in ISPRS Journal of photogrammetry and remote sensing, vol 169 (November 2020)
[article]
Titre : A generic framework for improving the geopositioning accuracy of multi-source optical and SAR imagery Type de document : Article/Communication Auteurs : Niangang Jiao, Auteur ; Feng Wang, Auteur ; Hongjian You, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 377 - 388 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] chaîne de traitement
[Termes IGN] correction géométrique
[Termes IGN] étalonnage géométrique
[Termes IGN] géolocalisation
[Termes IGN] image Gaofen
[Termes IGN] image Jilin
[Termes IGN] image optique
[Termes IGN] image radar moirée
[Termes IGN] image satellite
[Termes IGN] point d'appui
[Termes IGN] précision géométrique (imagerie)Résumé : (auteur) To date, numerous Earth observation datasets from different types of satellites have been widely used in photogrammetric fields, including urban 3D modelling and geographic information systems. The development of small satellites has provided a new way to obtain repeated observations in a short period. However, compared with that of standard satellite imagery, the geometric performance of imagery from small satellites is relatively poor, restricting their photogrammetric applications. Traditional methods can improve the accuracy of optical images with the addition of well-distributed ground control points (GCPs), which require considerable financial and human resources. The collection of multi-view datasets is an alternative method for geometric processing without GCPs, but relies heavily on the stability and revisit period of satellite platforms. Therefore, this paper presents a framework for improving the geopositioning accuracy of multi-source datasets obtained from optical and synthetic aperture radar (SAR) satellites, and a novel heterogeneous weight strategy is proposed based on an analysis of the geometric error sources of SAR and optical images. The geometric performance of multi-source optical imagery from the Jilin-1 (JL-1) small satellite constellation is evaluated and analysed first, and then Gaofen-3 (GF-3) SAR images are calibrated based on statistical analysis for the production of virtual control points (VCPs). Based on our proposed heterogeneous weight strategy, multi-source optical and SAR images are integrated to improve the geopositioning accuracy. Experimental results indicate that our proposed model can achieve the best performance compared with other popular models, producing an accuracy of approximately 3 m in planimetry and 2 m in height, thereby providing a generic way to synergistically use multi-source remote sensing data. Numéro de notice : A2020-642 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.09.017 Date de publication en ligne : 12/10/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.09.017 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96066
in ISPRS Journal of photogrammetry and remote sensing > vol 169 (November 2020) . - pp 377 - 388[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020113 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020112 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt