Détail de l'auteur
Auteur Teresa Enes |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Shrub biomass estimates in former burnt areas using Sentinel 2 images processing and classification / Jose Aranha in Forests, vol 11 n° 5 (May 2020)
[article]
Titre : Shrub biomass estimates in former burnt areas using Sentinel 2 images processing and classification Type de document : Article/Communication Auteurs : Jose Aranha, Auteur ; Teresa Enes, Auteur ; Ana Calvão, Auteur ; Hélder Viana, Auteur Année de publication : 2020 Article en page(s) : 19 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] arbuste
[Termes IGN] biomasse
[Termes IGN] classification dirigée
[Termes IGN] gestion forestière
[Termes IGN] image proche infrarouge
[Termes IGN] image RVB
[Termes IGN] image Sentinel-MSI
[Termes IGN] incendie de forêt
[Termes IGN] modèle de croissance végétale
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] Portugal
[Termes IGN] signature spectrale
[Termes IGN] sous-bois
[Termes IGN] système d'information géographique
[Termes IGN] zone sinistréeRésumé : (auteur) Shrubs growing in former burnt areas play two diametrically opposed roles. On the one hand, they protect the soil against erosion, promote rainwater infiltration, carbon sequestration and support animal life. On the other hand, after the shrubs’ density reaches a particular size for the canopy to touch and the shrubs’ biomass accumulates more than 10 Mg ha−1, they create the necessary conditions for severe wild fires to occur and spread. The creation of a methodology suitable to identify former burnt areas and to track shrubs’ regrowth within these areas in a regular and a multi temporal basis would be beneficial. The combined use of geographical information systems (GIS) and remote sensing (RS) supported by dedicated land survey and field work for data collection has been identified as a suitable method to manage these tasks. The free access to Sentinel images constitutes a valuable tool for updating the GIS project and for the monitoring of regular shrubs’ accumulated biomass. Sentinel 2 VIS-NIR images are suitable to classify rural areas (overall accuracy = 79.6% and Cohen’s K = 0.754) and to create normalized difference vegetation index (NDVI) images to be used in association to allometric equations for the shrubs’ biomass estimation (R2 = 0.8984, p-value Numéro de notice : A2020-654 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f11050555 Date de publication en ligne : 14/05/2020 En ligne : https://doi.org/10.3390/f11050555 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96116
in Forests > vol 11 n° 5 (May 2020) . - 19 p.[article]