Détail de l'auteur
Auteur Ming Yang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A novel spectral–spatial based adaptive minimum spanning forest for hyperspectral image classification / Jing Lv in Geoinformatica, vol 24 n° 4 (October 2020)
[article]
Titre : A novel spectral–spatial based adaptive minimum spanning forest for hyperspectral image classification Type de document : Article/Communication Auteurs : Jing Lv, Auteur ; Huimin Zhang, Auteur ; Ming Yang, Auteur ; Wanqi Yang, Auteur Année de publication : 2020 Article en page(s) : pp 827 - 848 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] arbre aléatoire minimum
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] classification pixellaire
[Termes IGN] image hyperspectrale
[Termes IGN] segmentation d'imageRésumé : (Auteur) The classification methods based on minimum spanning forest (MSF) have yielded impressive results for hyperspectral image. However, previous methods exist several drawbacks, i.e., marker selection methods are easily affected by boundary noise pixels, dissimilarity measure methods between pixels are inaccurate, and also image segmentation process is not robust, since they have not effectively utilized spatial information. To this end, in this paper, novel gradient-based marker selection technique, dissimilarity measures, and adaptive connection weighting method are proposed by making full use of spatial information in hyperspectral image. Concretely, for a given hyperspectral image, a pixel-wise classification is firstly performed, and meanwhile the gradient map is generated by a morphology-based algorithm. Secondly, the most reliable pixels are selected as the markers from the classification map, and then the boundary noise pixels are excluded from the marker map by using the gradient map. Thirdly, several new dissimilarity measures are proposed by incorporating gradient information or probability information of pixels. Furthermore, in the growth procedure of MSF, the connection weighting between pixels is adjusted adaptively to improve the robustness of the MSF algorithm. Finally, when building the final classification map by using the majority voting rule, the labels of the training samples are used to dominate the label prediction. Experimental results are performed on two hyperspectral image sets Indian Pines and University of Pavia with different resolutions and contexts. The proposed approach yields higher classification accuracies compared to previously proposed classification methods, and provides accurate segmentation maps. Numéro de notice : A2020-496 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10707-020-00403-0 Date de publication en ligne : 11/05/2020 En ligne : https://doi.org/10.1007/s10707-020-00403-0 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96117
in Geoinformatica > vol 24 n° 4 (October 2020) . - pp 827 - 848[article]