Détail de l'éditeur
Ecole Centrale de Lille
localisé à :
Lille
|
Documents disponibles chez cet éditeur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Deep learning based vehicular mobility models for intelligent transportation systems / Jian Zhang (2018)
Titre : Deep learning based vehicular mobility models for intelligent transportation systems Type de document : Thèse/HDR Auteurs : Jian Zhang, Auteur ; Abdelkader El Kamel, Directeur de thèse Editeur : Lille [France] : Ecole Centrale de Lille Année de publication : 2018 Importance : 175 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse présentée en vue d’obtenir le grade de Docteur, Spécialité : Automatique, génie informatique, traitement du signal et des images, Doctorat délivré par Centrale LilleLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] analyse spatiale
[Termes IGN] apprentissage profond
[Termes IGN] chaîne de Markov
[Termes IGN] classification par réseau neuronal
[Termes IGN] données de flux
[Termes IGN] itération
[Termes IGN] mobilité humaine
[Termes IGN] modèle de simulation
[Termes IGN] sécurité routière
[Termes IGN] système de transport intelligent
[Termes IGN] trafic routier
[Termes IGN] transport
[Termes IGN] UML
[Termes IGN] véhicule sans piloteIndex. décimale : THESE Thèses et HDR Résumé : (auteur) The intelligent transportation systems gain great research interests in recent years. Although the realistic traffic simulation plays an important role, it has not received enough attention. This thesis is devoted to studying the traffic simulation in microscopic level, and proposes corresponding vehicular mobility models. Using deep learning methods, these mobility models have been proven with a promising credibility to represent the vehicles in real-world. Firstly, a data-driven neural network based mobility model is proposed. This model comes from real-world trajectory data and allows mimicking local vehicle behaviors. By analyzing the performance of this basic learning based mobility model, we indicate that an improvement is possible and we propose its specification. An HMM is then introduced. The preparation of this integration is necessary, which includes an examination of traditional dynamics based mobility models and the adaptation method of “classical” models to our situation. At last, the enhanced model is presented, and a sophisticated scenario simulation is built with it to validate the theoretical results. The performance of our mobility model is promising and implementation issues have also been discussed. Note de contenu : 1- Introduction
2- Neural network based data-driven mobility model
3- Enhanced Mobility Model with HMM
4- Experiment platform and scenario simulation
Conclusions and PerspectivesNuméro de notice : 25873 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE/MATHEMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Automatique, génie informatique, traitement du signal et des images : École Centrale Lille : 2018 Organisme de stage : CRIStAL (laboratoire) nature-HAL : Thèse DOI : sans En ligne : https://tel.archives-ouvertes.fr/tel-02136219/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95562