Détail de l'auteur
Auteur Sunmin Lee |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Landslide susceptibility mapping using Naïve Bayes and Bayesian network models in Umyeonsan, Korea / Sunmin Lee in Geocarto international, vol 35 n° 15 ([01/11/2020])
[article]
Titre : Landslide susceptibility mapping using Naïve Bayes and Bayesian network models in Umyeonsan, Korea Type de document : Article/Communication Auteurs : Sunmin Lee, Auteur ; Moung-Jin Lee, Auteur ; Hyung-Sup Jung, Auteur ; Saro Lee, Auteur Année de publication : 2020 Article en page(s) : pp 1665 - 1679 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] carte de la végétation
[Termes IGN] carte forestière
[Termes IGN] carte topographique
[Termes IGN] cartographie des risques
[Termes IGN] catastrophe naturelle
[Termes IGN] Corée du sud
[Termes IGN] effondrement de terrain
[Termes IGN] modèle stochastique
[Termes IGN] réseau bayesien
[Termes IGN] système d'information géographique
[Termes IGN] zone urbaineRésumé : (auteur) In recent years, machine learning techniques have been increasingly applied to the assessment of various natural disasters, including landslides and floods. Machine learning techniques can be used to make predictions based on the relationships among events and their influencing factors. In this study, a machine learning approaches were applied based on landslide location data in a geographic information system environment. Topographic maps were used to determine the topographical factors. Additional soil and forest parameters were examined using information obtained from soil and forest maps. A total of 17 factors affecting landslide occurrence were selected and a spatial database was constructed. Naïve Bayes and Bayesian network models were applied to predict landslides based on selected risk factors. The two models showed accuracies of 78.3 and 79.8%, respectively. The results of this study provide a useful foundation for effective strategies to prevent and manage landslides in urban areas. Numéro de notice : A2020-658 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1585482 Date de publication en ligne : 16/04/2019 En ligne : https://doi.org/10.1080/10106049.2019.1585482 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96130
in Geocarto international > vol 35 n° 15 [01/11/2020] . - pp 1665 - 1679[article]