Détail de l'auteur
Auteur Junmin Liu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Bayesian transfer learning for object detection in optical remote sensing images / Changsheng Zhou in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
[article]
Titre : Bayesian transfer learning for object detection in optical remote sensing images Type de document : Article/Communication Auteurs : Changsheng Zhou, Auteur ; Jiangshe Zhang, Auteur ; Junmin Liu, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 7705 - 7719 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] chaîne de traitement
[Termes IGN] détection d'objet
[Termes IGN] distribution de Fisher
[Termes IGN] jeu de données localisées
[Termes IGN] théorème de BayesRésumé : (auteur) In the literature of object detection in optical remote sensing images, a popular pipeline is first modifying an off-the-shelf deep neural network, then initializing the modified network by pretrained weights on a source data set, and finally fine-tuning the network on a target data set. The procedure works well in practice but might not make full use of underlying knowledge implied by pretrained weights. In this article, we propose a novel method, referred to as Fisher regularization, for efficient knowledge transferring. Based on Bayes’ theorem, the method stores underlying knowledge into a Fisher information matrix and fine-tunes parameters based on the knowledge. The proposed method would not introduce extra parameters and is less sensitive to hyperparameters than classical weight decay. Experiments on NWPUVHR-10 and DOTA data sets show that the proposed method is effective and works well with different object detectors. Numéro de notice : A2020-679 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2983201 Date de publication en ligne : 14/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2983201 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96182
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 11 (November 2020) . - pp 7705 - 7719[article]