Détail de l'auteur
Auteur Md Abul Ehsan Bhuiyan |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Understanding the synergies of deep learning and data fusion of multispectral and panchromatic high resolution commercial satellite imagery for automated ice-wedge polygon detection / Chandi Witharana in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)
[article]
Titre : Understanding the synergies of deep learning and data fusion of multispectral and panchromatic high resolution commercial satellite imagery for automated ice-wedge polygon detection Type de document : Article/Communication Auteurs : Chandi Witharana, Auteur ; Md Abul Ehsan Bhuiyan, Auteur ; Anna K. Liljedahl, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 174-191 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme de fusion
[Termes IGN] apprentissage profond
[Termes IGN] Arctique
[Termes IGN] artefact
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection automatique
[Termes IGN] fusion d'images
[Termes IGN] glace
[Termes IGN] image à haute résolution
[Termes IGN] pergélisol
[Termes IGN] texture d'imageRésumé : (Auteur) The utility of sheer volumes of very high spatial resolution (VHSR) commercial imagery in mapping the Arctic region is new and actively evolving. Commercial satellite sensors typically record image data in low-resolution multispectral (MS) and high-resolution panchromatic (PAN) mode. Spatial resolution is needed to accurately describe feature shapes and textural patterns, such as ice-wedge polygons (IWPs) that are rapidly transforming surface features due to degrading permafrost, while spectral resolution allows capturing of land-use and land-cover types. Data fusion, the process of combining PAN and MS images with complementary characteristics often serves as an integral component of remote sensing mapping workflows. The fusion process generates spectral and spatial artifacts that may affect the classification accuracies of subsequent automated image analysis algorithms, such as deep learning (DL) convolutional neural nets (CNN). We employed a detailed multidimensional assessment to understand the performances of an array of eight application-oriented data fusion algorithms when applied to VHSR image scenes for DLCNN-based mapping of ice-wedge polygons. Our findings revealed the scene dependency of data fusion algorithms and emphasized the need for careful selection of the proper algorithm. Results suggested that the fusion algorithms that preserve spatial character of original PAN imagery favor the DLCNN model performances. The choice of fusion approach needs to be considered of equal importance to the required training dataset for successful applications using DLCNN on VHRS imagery in order to enable an accurate mapping effort of permafrost thaw across the Arctic region. Numéro de notice : A2020-705 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.10.010 Date de publication en ligne : 01/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.10.010 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96232
in ISPRS Journal of photogrammetry and remote sensing > vol 170 (December 2020) . - pp 174-191[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2020121 RAB Revue Centre de documentation En réserve L003 Disponible