Détail de l'auteur
Auteur Teja Kattenborn |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Assessment of camera focal length influence on canopy reconstruction quality / Martin Denter in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 6 (December 2022)
[article]
Titre : Assessment of camera focal length influence on canopy reconstruction quality Type de document : Article/Communication Auteurs : Martin Denter, Auteur ; Julian Frey, Auteur ; Teja Kattenborn, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 100025 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie
[Termes IGN] Abies alba
[Termes IGN] Acer pseudoplatanus
[Termes IGN] Allemagne
[Termes IGN] canopée
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Fagus sylvatica
[Termes IGN] image captée par drone
[Termes IGN] Larix decidua
[Termes IGN] longueur focale
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] parcelle forestière
[Termes IGN] Picea abies
[Termes IGN] reconstruction d'image
[Termes IGN] semis de points
[Termes IGN] structure-from-motionRésumé : (auteur) Unoccupied aerial vehicles (UAV) with RGB-cameras are affordable and versatile devices for the generation of a series of remote sensing products that can be used for forest inventory tasks, such as creating high-resolution orthomosaics and canopy height models. The latter may serve purposes including tree species identification, forest damage assessments, canopy height or timber stock assessments. Besides flight and image acquisition parameters such as image overlap, flight height, and weather conditions, the focal length, which determines the opening angle of the camera lens, is a parameter that influences the reconstruction quality. Despite its importance, the effect of focal length on the quality of 3D reconstructions of forests has received little attention in the literature. Shorter focal lengths result in more accurate distance estimates in the nadir direction since small angular errors lead to large positional errors in narrow opening angles. In this study, 3D reconstructions of four UAV-acquisitions with different focal lengths (21, 35, 50, and 85 mm) on a 1 ha mature mixed forest plot were compared to reference point clouds derived from high quality Terrestrial Laser Scans. Shorter focal lengths (21 and 35 mm) led to a higher agreement with the TLS scans and thus better reconstruction quality, while at 50 mm, quality losses were observed, and at 85 mm, the quality was considerably worse. F1-scores calculated from a voxel representation of the point clouds amounted to 0.254 with 35 mm and 0.201 with 85 mm. The precision with 21 mm focal length was 0.466 and 0.302 with 85 mm. We thus recommend a focal length no longer than 35 mm during UAV Structure from Motion (SfM) data acquisition for forest management practices. Numéro de notice : A2022-870 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.ophoto.2022.100025 Date de publication en ligne : 09/11/2022 En ligne : https://doi.org/10.1016/j.ophoto.2022.100025 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102164
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 6 (December 2022) . - n° 100025[article]Convolutional Neural Networks accurately predict cover fractions of plant species and communities in Unmanned Aerial Vehicle imagery / Teja Kattenborn in Remote sensing in ecology and conservation, vol 6 n° 4 (December 2020)
[article]
Titre : Convolutional Neural Networks accurately predict cover fractions of plant species and communities in Unmanned Aerial Vehicle imagery Type de document : Article/Communication Auteurs : Teja Kattenborn, Auteur ; Jana Eichel, Auteur ; Susan Wiser, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 472 - 486 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte forestière
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] espèce exotique envahissante
[Termes IGN] image à très haute résolution
[Termes IGN] image captée par drone
[Termes IGN] image RVBRésumé : (auteur) Unmanned Aerial Vehicles (UAV) greatly extended our possibilities to acquire high resolution remote sensing data for assessing the spatial distribution of species composition and vegetation characteristics. Yet, current pixel- or texture-based mapping approaches do not fully exploit the information content provided by the high spatial resolution. Here, to fully harness this spatial detail, we apply deep learning techniques, that is, Convolutional Neural Networks (CNNs), on regular tiles of UAV-orthoimagery (here 2–5 m) to identify the cover of target plant species and plant communities. The approach was tested with UAV-based orthomosaics and photogrammetric 3D information in three case studies, that is, (1) mapping tree species cover in primary forests, (2) mapping plant invasions by woody species into forests and open land and (3) mapping vegetation succession in a glacier foreland. All three case studies resulted in high predictive accuracies. The accuracy increased with increasing tile size (2–5 m) reflecting the increased spatial context captured by a tile. The inclusion of 3D information derived from the photogrammetric workflow did not significantly improve the models. We conclude that CNN are powerful in harnessing high resolution data acquired from UAV to map vegetation patterns. The study was based on low cost red, green, blue (RGB) sensors making the method accessible to a wide range of users. Combining UAV and CNN will provide tremendous opportunities for ecological applications. Numéro de notice : A2020-852 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1002/rse2.146 Date de publication en ligne : 05/02/2020 En ligne : https://doi.org/10.1002/rse2.146 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98681
in Remote sensing in ecology and conservation > vol 6 n° 4 (December 2020) . - pp 472 - 486[article]Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks / Felix Schiefer in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)
[article]
Titre : Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks Type de document : Article/Communication Auteurs : Felix Schiefer, Auteur ; Teja Kattenborn, Auteur ; Annett Frick, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 205-215 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] apprentissage profond
[Termes IGN] arbre (flore)
[Termes IGN] carte forestière
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] espèce végétale
[Termes IGN] Forêt-Noire, massif de la
[Termes IGN] image à haute résolution
[Termes IGN] image captée par drone
[Termes IGN] image RVB
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] inventaire forestier local
[Termes IGN] segmentation sémantique
[Vedettes matières IGN] Inventaire forestierRésumé : (Auteur) The use of unmanned aerial vehicles (UAVs) in vegetation remote sensing allows a time-flexible and cost-effective acquisition of very high-resolution imagery. Still, current methods for the mapping of forest tree species do not exploit the respective, rich spatial information. Here, we assessed the potential of convolutional neural networks (CNNs) and very high-resolution RGB imagery from UAVs for the mapping of tree species in temperate forests. We used multicopter UAVs to obtain very high-resolution ( Numéro de notice : A2020-706 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.10.015 Date de publication en ligne : 03/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.10.015 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96236
in ISPRS Journal of photogrammetry and remote sensing > vol 170 (December 2020) . - pp 205-215[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2020121 RAB Revue Centre de documentation En réserve L003 Disponible