Détail de l'auteur
Auteur Vasil Yordanov |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Application of various strategies and methodologies for landslide susceptibility maps on a basin scale: the case study of Val Tartano, Italy / Vasil Yordanov in Applied geomatics, vol 12 n° 4 (December 2020)
[article]
Titre : Application of various strategies and methodologies for landslide susceptibility maps on a basin scale: the case study of Val Tartano, Italy Type de document : Article/Communication Auteurs : Vasil Yordanov, Auteur ; Maria Antonia Brovelli, Auteur Année de publication : 2020 Article en page(s) : 23 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse de sensibilité
[Termes IGN] cartographie des risques
[Termes IGN] cartographie géomorphologique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] effondrement de terrain
[Termes IGN] figuré linéaire
[Termes IGN] indice de risque
[Termes IGN] inventaire
[Termes IGN] Lombardie
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle numérique de terrain
[Termes IGN] modèle statistique
[Termes IGN] régression logistiqueRésumé : (auteur) Landslide susceptibility mapping is a crucial initial step in risk mitigation strategies. Landslide hazards are widely spread all over the world and, as such, mapping the relevant susceptibility levels is in constant research and development. As a result, numerous modelling techniques and approaches have been adopted by scholars, implementing these models at different scales and with different terrains, in search of the best-performing strategy. Nevertheless, a direct comparison is not possible unless the strategies are implemented under the same environmental conditions and scenarios. The aim of this work is to implement three statistical-based models (Statistical Index, Logistic Regression, and Random Forest) at the basin scale, using various scenarios for the input datasets (terrain variables), training samples and ratios, and validation metrics. A reassessment of the original input data was carried out to improve the model performance. In total, 79 maps were obtained using different combinations with some highly satisfactory outcomes and others that are barely acceptable. Random Forest achieved the highest scores in most of the cases, proving to be a reliable modelling approach. While Statistical Index passes the evaluation tests, most of the resulting maps were considered unreliable. This research highlighted the importance of a complete and up-to-date landslide inventory, the knowledge of local conditions, as well as the pre- and post-analysis evaluation of the input and output combinations. Numéro de notice : A2020-695 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.1007/s12518-020-00344-1 Date de publication en ligne : 09/11/2020 En ligne : https://doi.org/10.1007/s12518-020-00344-1 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96244
in Applied geomatics > vol 12 n° 4 (December 2020) . - 23 p.[article]