Détail de l'auteur
Auteur Zhiyan Yi |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
An agent-based modeling approach for public charging demand estimation and charging station location optimization at urban scale / Zhiyan Yi in Computers, Environment and Urban Systems, vol 101 (April 2023)
[article]
Titre : An agent-based modeling approach for public charging demand estimation and charging station location optimization at urban scale Type de document : Article/Communication Auteurs : Zhiyan Yi, Auteur ; Bingkun Chen, Auteur ; Xiaoyue Cathy Liu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 101949 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] chaîne de Markov
[Termes IGN] distribution spatiale
[Termes IGN] équipement collectif
[Termes IGN] modèle orienté agent
[Termes IGN] optimisation spatiale
[Termes IGN] planification urbaine
[Termes IGN] véhicule électrique
[Termes IGN] zone urbaineRésumé : (auteur) As the market penetration of electric vehicles (EVs) increases, the surge of charging demand could potentially overload the power grid and disrupt infrastructure planning. Hence, an efficient deployment strategy of electrical vehicle supply equipment (EVSE) is much needed. This study attempts to address the EVSE problem from a microscopic perspective by formulating the problem in two steps: public charging demand simulation and charging station location optimization. Specifically, we apply agent-based modeling approach to produce high-resolution daily driving profiles within an urban-scale context using MATSim. Subsequently, we perform EV assignment based on socioeconomic attributes to determine EV adopters. Energy consumption model and public charging rule are specified for generating synthetic public charging demand and such demand is validated against real-world public charging records to guarantee the robustness of simulation results. In the second step, we apply a location approach – capacitated maximal coverage location problem (CMCLP) model – to reallocate existing charging stations with the objective of maximizing the coverage of total charging demands generated from the previous step under the budget and load capacity constraints. The entire framework is capable of modeling the spatiotemporal distribution of public charging demand in a bottom-up fashion, and provide practical support for future public EVSE installation. Numéro de notice : A2023-186 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2023.101949 Date de publication en ligne : 15/02/2023 En ligne : https://doi.org/10.1016/j.compenvurbsys.2023.101949 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102960
in Computers, Environment and Urban Systems > vol 101 (April 2023) . - n° 101949[article]Inferencing hourly traffic volume using data-driven machine learning and graph theory / Zhiyan Yi in Computers, Environment and Urban Systems, vol 85 (January 2021)
[article]
Titre : Inferencing hourly traffic volume using data-driven machine learning and graph theory Type de document : Article/Communication Auteurs : Zhiyan Yi, Auteur ; Xiaoyue Cathy Liu, Auteur ; Nikola Markovic, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 101548 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] classification barycentrique
[Termes IGN] échantillonnage de données
[Termes IGN] Extreme Gradient Machine
[Termes IGN] inférence statistique
[Termes IGN] modèle de simulation
[Termes IGN] planification
[Termes IGN] théorie des graphes
[Termes IGN] trafic routier
[Termes IGN] Utah (Etas-Unis)Résumé : (auteur) Traffic volume is a critical piece of information in many applications, such as transportation long-range planning and traffic operation analysis. Effectively capturing traffic volumes on a network scale is beneficial to Transportation Systems Management & Operations (TSM&O). Yet it is impractical to install sensors to cover a large road network. To address this issue, spatial prediction techniques are widely performed to estimate traffic volumes at sites without sensors. In retrospect, most relevant studies resort to machine learning methods and treat each prediction location independently during the training process, ignoring the potential spatial dependency among them. This paper presents an innovative spatial prediction method of hourly traffic volume on a network scale. To achieve this, we applied a state-of-the-art tree ensemble model - extreme gradient boosting tree (XGBoost) - to handle the large-scale features and hourly traffic volume samples, due to the model's powerful scalability. Moreover, spatial dependency among road segments is taken into account in the proposed model using graph theory. Specifically, we created a traffic network graph leveraging probe trajectory data, and implemented a graph-based approach - breadth first search (BFS) - to search neighboring sites in this graph for computing spatial dependency. The proposed spatial dependency feature is subsequently incorporated as a new feature fed into XGBoost. The proposed model is tested on the road network in the state of Utah. Numerical results not only indicate high computational efficiency of the proposed model, but also demonstrate significant improvement in prediction accuracy of hourly traffic volume comparing with the benchmarked models. Numéro de notice : A2021-004 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2020.101548 Date de publication en ligne : 24/09/2020 En ligne : https://doi.org/10.1016/j.compenvurbsys.2020.101548 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96271
in Computers, Environment and Urban Systems > vol 85 (January 2021) . - n° 101548[article]