Détail de l'auteur
Auteur Thomas D. Grant |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Titre : On the path to AI : Law’s prophecies and the conceptual foundations of the machine learning age Type de document : Monographie Auteurs : Thomas D. Grant, Auteur ; Damon J. Wischik, Auteur Editeur : Palgrave Macmillan (Londres, New York, ...) Année de publication : 2020 Importance : 147 p. Format : 15 x 22 cm ISBN/ISSN/EAN : 978-3-030-43582-0 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] apprentissage automatique
[Termes IGN] données massives
[Termes IGN] droit
[Termes IGN] statut juridique
[Termes IGN] théorie des probabilitésRésumé : (éditeur) This open access book explores machine learning and its impact on how we make sense of the world. It does so by bringing together two ‘revolutions’ in a surprising analogy: the revolution of machine learning, which has placed computing on the path to artificial intelligence, and the revolution in thinking about the law that was spurred by Oliver Wendell Holmes Jr in the last two decades of the 19th century. Holmes reconceived law as prophecy based on experience, prefiguring the buzzwords of the machine learning age—prediction based on datasets. On the path to AI introduces readers to the key concepts of machine learning, discusses the potential applications and limitations of predictions generated by machines using data, and informs current debates amongst scholars, lawyers and policy makers on how it should be used and regulated wisely. Technologists will also find useful lessons learned from the last 120 years of legal grappling with accountability, explainability, and biased data. Note de contenu : 1- Two revolutions
2- Getting past logic
3- Experience and data as input
4- Finding patterns as the path from input to output
5- Output as prophecy
6- Explanations of machine learning
7- Juries and other reliable predictors
8- Poisonous datasets, poisonous trees
9- From holmes to alphaGo
ConclusionNuméro de notice : 25945 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE Nature : Monographie DOI : 10.1007/978-3-030-43582-0 En ligne : https://doi.org/10.1007/978-3-030-43582-0 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96338