Détail de l'auteur
Auteur Xuzhe Lyu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Building change detection using a shape context similarity model for LiDAR data / Xuzhe Lyu in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
[article]
Titre : Building change detection using a shape context similarity model for LiDAR data Type de document : Article/Communication Auteurs : Xuzhe Lyu, Auteur ; Ming Hao, Auteur ; Wenzhong Shi, Auteur Année de publication : 2020 Article en page(s) : n° 678 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse d'image orientée objet
[Termes IGN] détection de changement
[Termes IGN] détection du bâti
[Termes IGN] données lidar
[Termes IGN] fusion d'images
[Termes IGN] modèle numérique de surface
[Termes IGN] reconnaissance de formes
[Termes IGN] segmentation d'image
[Termes IGN] semis de pointsRésumé : (auteur) In this paper, a novel building change detection approach is proposed using statistical region merging (SRM) and a shape context similarity model for Light Detection and Ranging (LiDAR) data. First, digital surface models (DSMs) are generated from LiDAR acquired at two different epochs, and the difference data D-DSM is created by difference processing. Second, to reduce the noise and registration error of the pixel-based method, the SRM algorithm is applied to segment the D-DSM, and multi-scale segmentation results are obtained under different scale values. Then, the shape context similarity model is used to calculate the shape similarity between the segmented objects and the buildings. Finally, the refined building change map is produced by the k-means clustering method based on shape context similarity and area-to-length ratio. The experimental results indicated that the proposed method could effectively improve the accuracy of building change detection compared with some popular change detection methods. Numéro de notice : A2020-732 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9110678 Date de publication en ligne : 15/11/2020 En ligne : https://doi.org/10.3390/ijgi9110678 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96345
in ISPRS International journal of geo-information > vol 9 n° 11 (November 2020) . - n° 678[article]