Détail de l'auteur
Auteur Sanjiwana Arjasakusuma |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Combination of Landsat 8 OLI and Sentinel-1 SAR time-series data for mapping paddy fields in parts of West and Central Java provinces, Indonesia / Sanjiwana Arjasakusuma in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
[article]
Titre : Combination of Landsat 8 OLI and Sentinel-1 SAR time-series data for mapping paddy fields in parts of West and Central Java provinces, Indonesia Type de document : Article/Communication Auteurs : Sanjiwana Arjasakusuma, Auteur ; Sandiaga Swahyu Kusuma, Auteur ; Raihan Rafif, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 663 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] bande C
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] image Landsat-OLI
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] Java (île de)
[Termes IGN] modèle numérique de surface
[Termes IGN] Normalized Difference Built-up Index
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] Normalized Difference Water Index
[Termes IGN] polarisation
[Termes IGN] rizière
[Termes IGN] série temporelleRésumé : (auteur) The rise of Google Earth Engine, a cloud computing platform for spatial data, has unlocked seamless integration for multi-sensor and multi-temporal analysis, which is useful for the identification of land-cover classes based on their temporal characteristics. Our study aims to employ temporal patterns from monthly-median Sentinel-1 (S1) C-band synthetic aperture radar data and cloud-filled monthly spectral indices, i.e., Normalized Difference Vegetation Index (NDVI), Modified Normalized Difference Water Index (MNDWI), and Normalized Difference Built-up Index (NDBI), from Landsat 8 (L8) OLI for mapping rice cropland areas in the northern part of Central Java Province, Indonesia. The harmonic function was used to fill the cloud and cloud-masked values in the spectral indices from Landsat 8 data, and smile Random Forests (RF) and Classification And Regression Trees (CART) algorithms were used to map rice cropland areas using a combination of monthly S1 and monthly harmonic L8 spectral indices. An additional terrain variable, Terrain Roughness Index (TRI) from the SRTM dataset, was also included in the analysis. Our results demonstrated that RF models with 50 (RF50) and 80 (RF80) trees yielded better accuracy for mapping the extent of paddy fields, with user accuracies of 85.65% (RF50) and 85.75% (RF80), and producer accuracies of 91.63% (RF80) and 93.48% (RF50) (overall accuracies of 92.10% (RF80) and 92.47% (RF50)), respectively, while CART yielded a user accuracy of only 84.83% and a producer accuracy of 80.86%. The model variable importance in both RF50 and RF80 models showed that vertical transmit and horizontal receive (VH) polarization and harmonic-fitted NDVI were identified as the top five important variables, and the variables representing February, April, June, and December contributed more to the RF model. The detection of VH and NDVI as the top variables which contributed up to 51% of the Random Forest model indicated the importance of the multi-sensor combination for the identification of paddy fields. Numéro de notice : A2020-733 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9110663 Date de publication en ligne : 04/11/2020 En ligne : https://doi.org/10.3390/ijgi9110663 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96346
in ISPRS International journal of geo-information > vol 9 n° 11 (November 2020) . - n° 663[article]