Détail de l'auteur
Auteur Xuelong Li |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Hyperspectral band selection via optimal neighborhood reconstruction / Qi Wang in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
[article]
Titre : Hyperspectral band selection via optimal neighborhood reconstruction Type de document : Article/Communication Auteurs : Qi Wang, Auteur ; Fahong Zhang, Auteur ; Xuelong Li, Auteur Année de publication : 2020 Article en page(s) : pp 8465 - 8476 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse combinatoire (maths)
[Termes IGN] image hyperspectrale
[Termes IGN] image multibande
[Termes IGN] optimisation (mathématiques)
[Termes IGN] reconstruction d'image
[Termes IGN] réductionRésumé : (auteur) Band selection is one of the most important technique in the reduction of hyperspectral image (HSI). Different from traditional feature selection problem, an important characteristic of it is that there is usually strong correlation between neighboring bands, that is, bands with close indexes. Aiming to fully exploit this prior information, a novel band selection method called optimal neighborhood reconstruction (ONR) is proposed. In ONR, band selection is considered as a combinatorial optimization problem. It evaluates a band combination by assessing its ability to reconstruct the original data, and applies a noise reducer to minimize the influence of noisy bands. Instead of using some approximate algorithms, ONR exploits a recurrence relation that underlies the optimization target to obtain the optimal solution in an efficient way. Besides, we develop a parameter selection approach to automatically determine the parameter of ONR, ensuring it is adaptable to different data sets. In experiments, ONR is compared with some state-of-the-art methods on six HSI data sets. The results demonstrate that ONR is more effective and robust than the others in most of the cases. Numéro de notice : A2020-742 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2987955 Date de publication en ligne : 29/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2987955 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96372
in IEEE Transactions on geoscience and remote sensing > Vol 58 n° 12 (December 2020) . - pp 8465 - 8476[article]Nonlocal graph convolutional networks for hyperspectral image classification / Lichao Mou in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
[article]
Titre : Nonlocal graph convolutional networks for hyperspectral image classification Type de document : Article/Communication Auteurs : Lichao Mou, Auteur ; Xiaoqiang Lu, Auteur ; Xuelong Li, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 8246 - 8257 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] classification semi-dirigée
[Termes IGN] entropie
[Termes IGN] graphe
[Termes IGN] image hyperspectrale
[Termes IGN] réseau neuronal récurrentRésumé : (auteur) Over the past few years making use of deep networks, including convolutional neural networks (CNNs) and recurrent neural networks (RNNs), classifying hyperspectral images has progressed significantly and gained increasing attention. In spite of being successful, these networks need an adequate supply of labeled training instances for supervised learning, which, however, is quite costly to collect. On the other hand, unlabeled data can be accessed in almost arbitrary amounts. Hence it would be conceptually of great interest to explore networks that are able to exploit labeled and unlabeled data simultaneously for hyperspectral image classification. In this article, we propose a novel graph-based semisupervised network called nonlocal graph convolutional network (nonlocal GCN). Unlike existing CNNs and RNNs that receive pixels or patches of a hyperspectral image as inputs, this network takes the whole image (including both labeled and unlabeled data) in. More specifically, a nonlocal graph is first calculated. Given this graph representation, a couple of graph convolutional layers are used to extract features. Finally, the semisupervised learning of the network is done by using a cross-entropy error over all labeled instances. Note that the nonlocal GCN is end-to-end trainable. We demonstrate in extensive experiments that compared with state-of-the-art spectral classifiers and spectral–spatial classification networks, the nonlocal GCN is able to offer competitive results and high-quality classification maps (with fine boundaries and without noisy scattered points of misclassification). Numéro de notice : A2020-739 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2973363 Date de publication en ligne : 12/05/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2973363 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96365
in IEEE Transactions on geoscience and remote sensing > Vol 58 n° 12 (December 2020) . - pp 8246 - 8257[article]