Détail de l'auteur
Auteur Xing Yan |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A deep learning approach to improve the retrieval of temperature and humidity profiles from a ground-based microwave radiometer / Xing Yan in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
[article]
Titre : A deep learning approach to improve the retrieval of temperature and humidity profiles from a ground-based microwave radiometer Type de document : Article/Communication Auteurs : Xing Yan, Auteur ; Chen Liang, Auteur ; Yize Jiang, Auteur Année de publication : 2020 Article en page(s) : pp 8427 - 8437 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] apprentissage profond
[Termes IGN] changement climatique
[Termes IGN] classification par réseau neuronal
[Termes IGN] humidité du sol
[Termes IGN] modèle atmosphérique
[Termes IGN] radiomètre à hyperfréquence
[Termes IGN] température au solRésumé : (auteur) The ground-based microwave radiometer (MWR) retrieves atmospheric profiles with a high temporal resolution for temperature and humidity up to a height of 10 km. Such profiles are critical for understanding the evolution of climate systems. To improve the accuracy of profile retrieval in MWR, we developed a deep learning approach called batch normalization and robust neural network (BRNN). In contrast to the traditional backpropagation neural network (BPNN), which has previously been applied for MWR profile retrieval, BRNN reduces overfitting and has a greater capacity to describe nonlinear relationships between MWR measurements and atmospheric structure information. Validation of BRNN with the radiosonde demonstrates a good retrieval capability, showing a root-mean-square error of 1.70 K for temperature, 11.72% for relative humidity (RH), and 0.256 g/m 3 for water vapor density. A detailed comparison with various inversion methods (BPNN, extreme gradient boosting, support vector machine, ridge regression, and random forest) has also been conducted in this research, using the same training and test data sets. From the comparison, we demonstrated that BRNN significantly improves retrieval accuracy, particularly for the retrieval of temperature and RH near the surface. Numéro de notice : A2020-741 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2987896 Date de publication en ligne : 29/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2987896 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96371
in IEEE Transactions on geoscience and remote sensing > Vol 58 n° 12 (December 2020) . - pp 8427 - 8437[article]