Détail de l'auteur
Auteur Sudipan Saha |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Unsupervised deep joint segmentation of multitemporal high-resolution images / Sudipan Saha in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
[article]
Titre : Unsupervised deep joint segmentation of multitemporal high-resolution images Type de document : Article/Communication Auteurs : Sudipan Saha, Auteur ; Lichao Mou, Auteur ; Chunping Qiu, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 8780 - 8792 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] apprentissage profond
[Termes IGN] classification non dirigée
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de données
[Termes IGN] image à haute résolution
[Termes IGN] image à très haute résolution
[Termes IGN] image multitemporelle
[Termes IGN] itération
[Termes IGN] segmentation sémantiqueRésumé : (auteur) High/very-high-resolution (HR/VHR) multitemporal images are important in remote sensing to monitor the dynamics of the Earth’s surface. Unsupervised object-based image analysis provides an effective solution to analyze such images. Image semantic segmentation assigns pixel labels from meaningful object groups and has been extensively studied in the context of single-image analysis, however not explored for multitemporal one. In this article, we propose to extend supervised semantic segmentation to the unsupervised joint semantic segmentation of multitemporal images. We propose a novel method that processes multitemporal images by separately feeding to a deep network comprising of trainable convolutional layers. The training process does not involve any external label, and segmentation labels are obtained from the argmax classification of the final layer. A novel loss function is used to detect object segments from individual images as well as establish a correspondence between distinct multitemporal segments. Multitemporal semantic labels and weights of the trainable layers are jointly optimized in iterations. We tested the method on three different HR/VHR data sets from Munich, Paris, and Trento, which shows the method to be effective. We further extended the proposed joint segmentation method for change detection (CD) and tested on a VHR multisensor data set from Trento. Numéro de notice : A2020-744 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2990640 Date de publication en ligne : 11/05/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2990640 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96375
in IEEE Transactions on geoscience and remote sensing > Vol 58 n° 12 (December 2020) . - pp 8780 - 8792[article]