Détail de l'auteur
Auteur Farzaneh Dadrass Javan |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A deep 2D/3D Feature-Level fusion for classification of UAV multispectral imagery in urban areas / Hossein Pourazar in Geocarto international, vol 37 n° 23 ([15/10/2022])
[article]
Titre : A deep 2D/3D Feature-Level fusion for classification of UAV multispectral imagery in urban areas Type de document : Article/Communication Auteurs : Hossein Pourazar, Auteur ; Farhad Samadzadegan, Auteur ; Farzaneh Dadrass Javan, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 6695 - 6712 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] alignement des données
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image captée par drone
[Termes IGN] image multibande
[Termes IGN] image proche infrarouge
[Termes IGN] image RVB
[Termes IGN] modèle numérique de surface
[Termes IGN] orthophotoplan numérique
[Termes IGN] zone urbaineRésumé : (auteur) In this paper, a deep convolutional neural network (CNN) is developed to classify the Unmanned Aerial Vehicle (UAV) derived multispectral imagery and normalized digital surface model (DSM) data in urban areas. For this purpose, a multi-input deep CNN (MIDCNN) architecture is designed using 11 parallel CNNs; 10 deep CNNs to extract the features from all possible triple combinations of spectral bands as well as one deep CNN dedicated to the normalized DSM data. The proposed method is compared with the traditional single-input (SI) and double-input (DI) deep CNN designations and random forest (RF) classifier, and evaluated using two independent test datasets. The results indicate that increasing the CNN layers parallelly augmented the classifier’s generalization and reduced overfitting risk. The overall accuracy and kappa value of the proposed method are 95% and 0.93, respectively, for the first test dataset, and 96% and 0.94, respectively, for the second test data set. Numéro de notice : A2022-749 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1959655 Date de publication en ligne : 04/08/2021 En ligne : https://doi.org/10.1080/10106049.2021.1959655 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101741
in Geocarto international > vol 37 n° 23 [15/10/2022] . - pp 6695 - 6712[article]A review of image fusion techniques for pan-sharpening of high-resolution satellite imagery / Farzaneh Dadrass Javan in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
[article]
Titre : A review of image fusion techniques for pan-sharpening of high-resolution satellite imagery Type de document : Article/Communication Auteurs : Farzaneh Dadrass Javan, Auteur ; Farhad Samadzadegan, Auteur ; Soroosh Mehravar, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 101 - 117 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] affinage d'image
[Termes IGN] analyse de variance
[Termes IGN] fusion d'images
[Termes IGN] image Kompsat
[Termes IGN] image à haute résolution
[Termes IGN] image Geoeye
[Termes IGN] image Ikonos
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] image Pléiades-HR
[Termes IGN] image Quickbird
[Termes IGN] image Worldview
[Termes IGN] netteté
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] pouvoir de résolution spectraleRésumé : (auteur) Pan-sharpening methods are commonly used to synthesize multispectral and panchromatic images. Selecting an appropriate algorithm that maintains the spectral and spatial information content of input images is a challenging task. This review paper investigates a wide range of algorithms, including 41 methods. For this purpose, the methods were categorized as Component Substitution (CS-based), Multi-Resolution Analysis (MRA), Variational Optimization-based (VO), and Hybrid and were tested on a collection of 21 case studies. These include images from WorldView-2, 3 & 4, GeoEye-1, QuickBird, IKONOS, KompSat-2, KompSat-3A, TripleSat, Pleiades-1, Pleiades with the aerial platform, and Deimos-2. Neural network-based methods were excluded due to their substantial computational requirements for operational mapping purposes. The methods were evaluated based on four Spectral and three Spatial quality metrics. An Analysis Of Variance (ANOVA) was used to statistically compare the pan-sharpening categories. Results indicate that MRA-based methods performed better in terms of spectral quality, whereas most Hybrid-based methods had the highest spatial quality and CS-based methods had the lowest results both spectrally and spatially. The revisited version of the Additive Wavelet Luminance Proportional Pan-sharpening method had the highest spectral quality, whereas Generalized IHS with Best Trade-off Parameter with Additive Weights showed the highest spatial quality. CS-based methods generally had the fastest run-time, whereas the majority of methods belonging to MRA and VO categories had relatively long run times. Numéro de notice : A2021-014 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.11.001 Date de publication en ligne : 21/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.11.001 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96418
in ISPRS Journal of photogrammetry and remote sensing > vol 171 (January 2021) . - pp 101 - 117[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021011 SL Revue Centre de documentation Revues en salle Disponible 081-2021013 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt