Détail de l'auteur
Auteur Ernesto Marcheggiani |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Urban tree species identification and carbon stock mapping for urban green planning and management / MD Abdul Choudhury in Forests, vol 11 n°11 (November 2020)
[article]
Titre : Urban tree species identification and carbon stock mapping for urban green planning and management Type de document : Article/Communication Auteurs : MD Abdul Choudhury, Auteur ; Ernesto Marcheggiani, Auteur ; Francesca Despini, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : N° 1226 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse d'image orientée objet
[Termes IGN] arbre urbain
[Termes IGN] cartographie écologique
[Termes IGN] déboisement
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données allométriques
[Termes IGN] données dendrométriques
[Termes IGN] Emilie-Romagne (Italie)
[Termes IGN] gestion urbaine
[Termes IGN] modèle de croissance végétale
[Termes IGN] photo-interprétation assistée par ordinateur
[Termes IGN] planification urbaine
[Termes IGN] puits de carbone
[Termes IGN] structure-from-motion
[Termes IGN] ville durableRésumé : (auteur) Recently, the severe intensification of atmospheric carbon has highlighted the importance of urban tree contributions in atmospheric carbon mitigations in city areas considering sustainable urban green planning and management systems. Explicit and timely information on urban trees and their roles in the atmospheric Carbon Stock (CS) are essential for policymakers to take immediate actions to ameliorate the effects of deforestation and their worsening outcomes. In this study, a detailed methodology for urban tree CS calibration and mapping was developed for the small urban area of Sassuolo in Italy. For dominant tree species classification, a remote sensing approach was applied, utilizing a high-resolution WV3 image. Five dominant species were identified and classified by applying the Object-Based Image Analysis (OBIA) approach with an overall accuracy of 78%. The CS calibration was done by utilizing an allometric model based on the field data of tree dendrometry—i.e., Height (H) and Diameter at Breast Height (DBH). For geometric measurements, a terrestrial photogrammetric approach known as Structure-from-Motion (SfM) was utilized. Out of 22 randomly selected sample plots of 100 square meters (10 m × 10 m) each, seven plots were utilized to validate the results of the CS calibration and mapping. In this study, CS mapping was done in an efficient and convenient way, highlighting higher CS and lower CS zones while recognizing the dominant tree species contributions. This study will help city planners initiate CS mapping and predict the possible CS for larger urban regions to ensure a sustainable urban green management system. Numéro de notice : A2020-757 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/f11111226 Date de publication en ligne : 21/11/2020 En ligne : https://doi.org/10.3390/f11111226 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96470
in Forests > vol 11 n°11 (November 2020) . - N° 1226[article]