Détail de l'auteur
Auteur Hui Luan |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
The spatial structure of socioeconomic disadvantage: a Bayesian multivariate spatial factor analysis / Matthew Quick in International journal of geographical information science IJGIS, vol 35 n° 1 (January 2021)
[article]
Titre : The spatial structure of socioeconomic disadvantage: a Bayesian multivariate spatial factor analysis Type de document : Article/Communication Auteurs : Matthew Quick, Auteur ; Hui Luan, Auteur Année de publication : 2021 Article en page(s) : pp 63 - 83 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse multivariée
[Termes IGN] analyse socio-économique
[Termes IGN] classification bayesienne
[Termes IGN] pauvreté
[Termes IGN] quartier
[Termes IGN] revenu
[Termes IGN] structure spatiale
[Termes IGN] TorontoRésumé : (auteur) Neighborhood socioeconomic disadvantage is a measure of socio-spatial inequality that has been shown to be associated with a variety of social, economic, and health outcomes. Existing studies that explore the local patterning of disadvantage often construct composite indices that summarize the interactions between multiple dimensions of social status, but do not consider if, and how, disadvantage exhibits spatial structure. This study applies a Bayesian multivariate factor analytic modeling approach to examine the spatial structure of socioeconomic disadvantage in Toronto, Canada. Socioeconomic disadvantage is modeled as an area-based composite index associated with three variables measuring low income, low-educational attainment, and low occupational status, and a series of models with different assumptions regarding the spatial structure of disadvantage are compared. The best-fitting model shows that the prevalence of low-income households has the strongest positive association with disadvantage and that spatial clustering is three times more important than spatial heterogeneity for explaining the spatial structure of disadvantage. The implications of this study for analyzing multivariate spatial data and for understanding the interactions amongst multiple dimensions of disadvantage are discussed. Numéro de notice : A2021-020 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1759807 Date de publication en ligne : 07/05/2020 En ligne : https://doi.org/10.1080/13658816.2020.1759807 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96519
in International journal of geographical information science IJGIS > vol 35 n° 1 (January 2021) . - pp 63 - 83[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2021011 SL Revue Centre de documentation Revues en salle Disponible