Détail de l'auteur
Auteur Laura Di Rocco |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Sherloc: a knowledge-driven algorithm for geolocating microblog messages at sub-city level / Laura Di Rocco in International journal of geographical information science IJGIS, vol 35 n° 1 (January 2021)
[article]
Titre : Sherloc: a knowledge-driven algorithm for geolocating microblog messages at sub-city level Type de document : Article/Communication Auteurs : Laura Di Rocco, Auteur ; Michela Bertolotto, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 84 - 115 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] données localisées
[Termes IGN] géolocalisation
[Termes IGN] inférence
[Termes IGN] microblogue
[Termes IGN] répertoire toponymique
[Termes IGN] segmentation sémantique
[Termes IGN] système à base de connaissances
[Termes IGN] toponyme
[Termes IGN] zone urbaineRésumé : (auteur) Many solutions for coarse geolocating of users at the time they post a message exist. However, for many important applications, like traffic monitoring and event detection, finer geolocation at the level of city neighborhoods, i.e., at a sub-city level, is needed. Data-driven approaches often do not guarantee good accuracy and efficiency due to the higher number of sub-city level positions to be estimated and the low availability of balanced and large training sets. We claim that external information sources overcome limitations of data-driven approaches in achieving good accuracy for sub-city level geolocation and we present a knowledge-driven approach achieving good results once the reference area of a message is known. Our algorithm, called Sherloc, exploits toponyms in the message, extracts their semantic from a geographic gazetteer, and embeds them into a metric space that captures the semantic distance among them. We identify the semantically closest toponyms to a message and then cluster them with respect to their spatial locations. Sherloc requires no prior training, it can infer the location at sub-city level with high accuracy, and it is not limited to geolocating on a fixed spatial grid. Numéro de notice : A2021-021 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1764003 Date de publication en ligne : 16/06/2020 En ligne : https://doi.org/10.1080/13658816.2020.1764003 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96521
in International journal of geographical information science IJGIS > vol 35 n° 1 (January 2021) . - pp 84 - 115[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2021011 SL Revue Centre de documentation Revues en salle Disponible