Détail de l'auteur
Auteur Shixin Wang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A novel intelligent classification method for urban green space based on high-resolution remote sensing images / Zhiyu Xu in Remote sensing, vol 12 n° 22 (December-1 2020)
[article]
Titre : A novel intelligent classification method for urban green space based on high-resolution remote sensing images Type de document : Article/Communication Auteurs : Zhiyu Xu, Auteur ; Yi Zhou, Auteur ; Shixin Wang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 3845 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] apprentissage profond
[Termes IGN] arbre urbain
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] espace vert
[Termes IGN] image à haute résolution
[Termes IGN] image Gaofen
[Termes IGN] milieu urbain
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] Pékin (Chine)
[Termes IGN] phénologie
[Termes IGN] précision de la classification
[Termes IGN] urbanismeRésumé : (auteur) The real-time, accurate, and refined monitoring of urban green space status information is of great significance in the construction of urban ecological environment and the improvement of urban ecological benefits. The high-resolution technology can provide abundant information of ground objects, which makes the information of urban green surface more complicated. The existing classification methods are challenging to meet the classification accuracy and automation requirements of high-resolution images. This paper proposed a deep learning classification method for urban green space based on phenological features constraints in order to make full use of the spectral and spatial information of green space provided by high-resolution remote sensing images (GaoFen-2) in different periods. The vegetation phenological features were added as auxiliary bands to the deep learning network for training and classification. We used the HRNet (High-Resolution Network) as our model and introduced the Focal Tversky Loss function to solve the sample imbalance problem. The experimental results show that the introduction of phenological features into HRNet model training can effectively improve urban green space classification accuracy by solving the problem of misclassification of evergreen and deciduous trees. The improvement rate of F1-Score of deciduous trees, evergreen trees, and grassland were 0.48%, 4.77%, and 3.93%, respectively, which proved that the combination of vegetation phenology and high-resolution remote sensing image can improve the results of deep learning urban green space classification. Numéro de notice : A2020-792 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs12223845 Date de publication en ligne : 23/11/2020 En ligne : https://doi.org/10.3390/rs12223845 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96565
in Remote sensing > vol 12 n° 22 (December-1 2020) . - n° 3845[article]