Détail de l'auteur
Auteur Yongil Kim |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A framework for unsupervised wildfire damage assessment using VHR satellite images with PlanetScope data / Minkyung Chung in Remote sensing, vol 12 n° 22 (December-1 2020)
[article]
Titre : A framework for unsupervised wildfire damage assessment using VHR satellite images with PlanetScope data Type de document : Article/Communication Auteurs : Minkyung Chung, Auteur ; Youkyung Han, Auteur ; Yongil Kim, Auteur Année de publication : 2020 Article en page(s) : n° 3835 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aide à la décision
[Termes IGN] classification non dirigée
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] Corée du sud
[Termes IGN] détection de changement
[Termes IGN] dommage
[Termes IGN] estimation par noyau
[Termes IGN] flou
[Termes IGN] gestion des risques
[Termes IGN] image à très haute résolution
[Termes IGN] image Geoeye
[Termes IGN] image multibande
[Termes IGN] image PlanetScope
[Termes IGN] incendie de forêt
[Termes IGN] Normalized Difference Vegetation IndexRésumé : (auteur) The application of remote sensing techniques for disaster management often requires rapid damage assessment to support decision-making for post-treatment activities. As the on-demand acquisition of pre-event very high-resolution (VHR) images is typically limited, PlanetScope (PS) offers daily images of global coverage, thereby providing favorable opportunities to obtain high-resolution pre-event images. In this study, we propose an unsupervised change detection framework that uses post-fire VHR images with pre-fire PS data to facilitate the assessment of wildfire damage. To minimize the time and cost of human intervention, the entire process was executed in an unsupervised manner from image selection to change detection. First, to select clear pre-fire PS images, a blur kernel was adopted for the blind and automatic evaluation of local image quality. Subsequently, pseudo-training data were automatically generated from contextual features regardless of the statistical distribution of the data, whereas spectral and textural features were employed in the change detection procedure to fully exploit the properties of different features. The proposed method was validated in a case study of the 2019 Gangwon wildfire in South Korea, using post-fire GeoEye-1 (GE-1) and pre-fire PS images. The experimental results verified the effectiveness of the proposed change detection method, achieving an overall accuracy of over 99% with low false alarm rate (FAR), which is comparable to the accuracy level of the supervised approach. The proposed unsupervised framework accomplished efficient wildfire damage assessment without any prior information by utilizing the multiple features from multi-sensor bi-temporal images. Numéro de notice : A2020-793 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs12223835 Date de publication en ligne : 22/11/2020 En ligne : https://doi.org/10.3390/rs12223835 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96570
in Remote sensing > vol 12 n° 22 (December-1 2020) . - n° 3835[article]