Détail de l'auteur
Auteur Zhenhong Du |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Geographically and temporally neural network weighted regression for modeling spatiotemporal non-stationary relationships / Sensen Wu in International journal of geographical information science IJGIS, vol 35 n° 3 (March 2021)
[article]
Titre : Geographically and temporally neural network weighted regression for modeling spatiotemporal non-stationary relationships Type de document : Article/Communication Auteurs : Sensen Wu, Auteur ; Zhongyi Wang, Auteur ; Zhenhong Du, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 582 - 608 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal
[Termes IGN] espace-temps
[Termes IGN] estimation par noyau
[Termes IGN] littoral
[Termes IGN] modélisation environnementale
[Termes IGN] raisonnement spatiotemporel
[Termes IGN] régression géographiquement pondérée
[Termes IGN] régression linéaireRésumé : (auteur) Geographically weighted regression (GWR) and geographically and temporally weighted regression (GTWR) are classic methods for estimating non-stationary relationships. Although these methods have been widely used in geographical modeling and spatiotemporal analysis, they face challenges in adequately expressing space-time proximity and constructing a kernel with optimal weights. This probably results in an insufficient estimation of spatiotemporal non-stationarity. To address complex non-linear interactions between time and space, a spatiotemporal proximity neural network (STPNN) is proposed in this paper to accurately generate space-time distance. A geographically and temporally neural network weighted regression (GTNNWR) model that extends geographically neural network weighted regression (GNNWR) with the proposed STPNN is then developed to effectively model spatiotemporal non-stationary relationships. To examine its performance, we conducted two case studies of simulated datasets and environmental modeling in coastal areas of Zhejiang, China. The GTNNWR model was fully evaluated by comparing with ordinary linear regression (OLR), GWR, GNNWR, and GTWR models. The results demonstrated that GTNNWR not only achieved the best fitting and prediction performance but also exactly quantified spatiotemporal non-stationary relationships. Further, GTNNWR has the potential to handle complex spatiotemporal non-stationarity in various geographical processes and environmental phenomena. Numéro de notice : A2021-167 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1775836 Date de publication en ligne : 16/06/2020 En ligne : https://doi.org/10.1080/13658816.2020.1775836 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97102
in International journal of geographical information science IJGIS > vol 35 n° 3 (March 2021) . - pp 582 - 608[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2021031 SL Revue Centre de documentation Revues en salle Disponible STME: An effective method for discovering spatiotemporal multi‐type clusters containing events with different densities / Chao Wang in Transactions in GIS, Vol 24 n° 6 (December 2020)
[article]
Titre : STME: An effective method for discovering spatiotemporal multi‐type clusters containing events with different densities Type de document : Article/Communication Auteurs : Chao Wang, Auteur ; Zhenhong Du, Auteur ; Yuhua Gu, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1559 - 1577 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] classification barycentrique
[Termes IGN] données spatiotemporelles
[Termes IGN] exploration de données
[Termes IGN] exploration de données géographiques
[Termes IGN] New York (Etats-Unis ; ville)
[Termes IGN] origine - destination
[Termes IGN] Pékin (Chine)
[Termes IGN] taxiRésumé : (Auteur) Clustering on spatiotemporal point events with multiple types is an important step for exploratory data mining and can help us reveal the correlation of event types. In this article, we present an effective method for discovering spatiotemporal multi‐type clusters containing events with different densities and event types (STME). Particularly, the type of events in a cluster can be different, and clusters with similar densities but different internal compositions should be distinguished. We use the distance to the kth nearest neighbour to define the size of the searched neighbourhood, and expand clusters by the concept of cluster reachable, ensuring that the proportion of various types of events in the cluster remains stable. The concept of clustering priority is also proposed to make the cluster always expand from the region with the highest density, which improves the robustness of clustering. Moreover, the density of multiple types of events in clusters is estimated to discover the internal structure of clusters and further explore the correlation between events. The effectiveness of the STME algorithm is demonstrated in several simulated and real data sets, including points of interest data in Beijing and the origins and destinations of taxi trips in New York. Numéro de notice : A2020-768 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12662 Date de publication en ligne : 19/07/2020 En ligne : https://doi.org/10.1111/tgis.12662 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96660
in Transactions in GIS > Vol 24 n° 6 (December 2020) . - pp 1559 - 1577[article]